-
Notifications
You must be signed in to change notification settings - Fork 18
/
dataBlocks.py
309 lines (257 loc) · 10.3 KB
/
dataBlocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# author is He Zhao
# The time to create is 2:18 PM, 7/12/16
import numpy as np
from multiprocessing import Process, Queue
class DataIterator(object):
def __init__(self, *data, **params):
'''
PARAMS:
fullbatch (bool): decides if the number of examples return after every
iteration should be always a full batch.
'''
self.data = data
self.batchsize = params['batchsize']
if 'fullbatch' in params:
self.fullbatch = params['fullbatch']
else:
self.fullbatch = False
def __iter__(self):
self.first = 0
return self
def __len__(self):
return len(self.data[0])
def __getitem__(self, key):
outs = []
for val in self.data:
outs.append(val[key])
return self.__class__(*outs, batchsize=self.batchsize, fullbatch=self.fullbatch)
class SequentialIterator(DataIterator):
'''
batchsize = 3
[0, 1, 2], [3, 4, 5], [6, 7, 8]
'''
def __next__(self):
if self.fullbatch and self.first+self.batchsize > len(self):
raise StopIteration()
elif self.first >= len(self):
raise StopIteration()
outs = []
for val in self.data:
outs.append(val[self.first:self.first+self.batchsize])
self.first += self.batchsize
return outs
class StepIterator(DataIterator):
'''
batchsize = 3
step = 1
[0, 1, 2], [1, 2, 3], [2, 3, 4]
'''
def __init__(self, *data, **params):
super(self, StepIterator).__init__(self, *data, **params)
self.step = params['step']
def __next__(self):
if self.fullbatch and self.first+self.batchsize > len(self):
raise StopIteration()
elif self.first >= len(self):
raise StopIteration()
outs = []
for val in self.data:
outs.append(val[self.first:self.first+self.batchsize])
self.first += self.step
return outs
def np_load_func(path):
arr = np.load(path)
return arr
class DataBlocks(object):
def __init__(self, data_paths, batchsize=32, load_func=np_load_func, allow_preload=False):
"""
DESCRIPTION:
This is class for processing blocks of data, whereby dataset is loaded
and unloaded into memory one block at a time.
PARAM:
data_paths (list or list of list): contains list of paths for data loading,
example:
[f1a.npy, f1b.npy, f1c.npy] or
[(f1a.npy, f1b.npy, f1c.npy), (f2a.npy, f2b.npy, f2c.npy)]
load_func (function): function for loading the data_paths, default to
numpy file loader
allow_preload (bool): by allowing preload, it will preload the next data block
while training at the same time on the current datablock,
this will reduce time but will also cost more memory.
"""
assert isinstance(data_paths, (list)), "data_paths is not a list"
self.data_paths = data_paths
self.batchsize = batchsize
self.load_func = load_func
self.allow_preload = allow_preload
self.q = Queue()
def __iter__(self):
self.files = iter(self.data_paths)
if self.allow_preload:
self.lastblock = False
bufile = next(self.files)
self.load_file(bufile, self.q)
return self
def __next__(self):
if self.allow_preload:
if self.lastblock:
raise StopIteration
try:
arr = self.q.get(block=True, timeout=None)
self.iterator = SequentialIterator(*arr, batchsize=self.batchsize)
bufile = next(self.files)
p = Process(target=self.load_file, args=(bufile, self.q))
p.start()
except:
self.lastblock = True
else:
fpath = next(self.files)
arr = self.load_file(fpath)
self.iterator = SequentialIterator(*arr, batchsize=self.batchsize)
return self.iterator
def load_file(self, paths, queue=None):
'''
paths (list or str): []
'''
data = []
if isinstance(paths, (list, tuple)):
for path in paths:
data.append(self.load_func(path))
else:
data.append(self.load_func(paths))
if queue:
queue.put(data)
return data
@property
def nblocks(self):
return len(self.data_paths)
class SimpleBlocks(object):
def __init__(self, data_paths, batchsize=32, load_func=np_load_func, allow_preload=False):
"""
DESCRIPTION:
This is class for processing blocks of data, whereby dataset is loaded
and unloaded into memory one block at a time.
PARAM:
data_paths (list or list of list): contains list of paths for data loading,
example:
[f1a.npy, f2a.npy, f3a.npy] ==> 1 col, 3 blocks or
[(f1a.npy, f1b.npy, f1c.npy), (f2a.npy, f2b.npy, f2c.npy)] ==> 3 cols, 2 blocks
load_func (function): function for loading the data_paths, default to
numpy file loader
allow_preload (bool): by allowing preload, it will preload the next data block
while training at the same time on the current datablock,
this will reduce time but will also cost more memory.
"""
assert isinstance(data_paths, (list)), "data_paths is not a list"
self.data_paths = data_paths
self.batchsize = batchsize
self.load_func = load_func
self.allow_preload = allow_preload
self.q = Queue()
def __iter__(self):
self.files = iter(self.data_paths)
if self.allow_preload:
self.lastblock = False
bufile = next(self.files)
self.load_file(bufile, self.q)
return self
def __next__(self):
if self.allow_preload:
if self.lastblock:
raise StopIteration
try:
arr = self.q.get(block=True, timeout=None)
self.iterator = SequentialIterator(*arr, batchsize=self.batchsize)
bufile = next(self.files)
p = Process(target=self.load_file, args=(bufile, self.q))
p.start()
except:
self.lastblock = True
else:
fpath = next(self.files)
arr = self.load_file(fpath)
self.iterator = SequentialIterator(*arr, batchsize=self.batchsize)
return self.iterator
def load_file(self, paths, queue=None):
'''
paths (list or str): []
'''
data = []
if isinstance(paths, (list, tuple)):
for path in paths:
data.append(self.load_func(path))
else:
data.append(self.load_func(paths))
if queue:
queue.put(data)
return data
@property
def nblocks(self):
return len(self.data_paths)
class DataBlocks(SimpleBlocks):
def __init__(self, data_paths, train_valid_ratio=[5,1], batchsize=32, load_func=np_load_func, allow_preload=False):
"""
DESCRIPTION:
This is class for processing blocks of data, whereby dataset is loaded
and unloaded into memory one block at a time.
PARAM:
data_paths (list or list of list): contains list of paths for data loading,
example:
[f1a.npy, f1b.npy, f1c.npy] or
[(f1a.npy, f1b.npy, f1c.npy), (f2a.npy, f2b.npy, f2c.npy)]
load_func (function): function for loading the data_paths, default to
numpy file loader
allow_preload (bool): by allowing preload, it will preload the next data block
while training at the same time on the current datablock,
this will reduce time but will also cost more memory.
"""
assert isinstance(data_paths, (list)), "data_paths is not a list"
self.data_paths = data_paths
self.train_valid_ratio = train_valid_ratio
self.batchsize = batchsize
self.load_func = load_func
self.allow_preload = allow_preload
self.q = Queue()
def __next__(self):
if self.allow_preload:
if self.lastblock:
raise StopIteration
try:
train, valid = self.q.get(block=True, timeout=None)
self.train_iterator = SequentialIterator(*train, batchsize=self.batchsize)
self.valid_iterator = SequentialIterator(*valid, batchsize=self.batchsize)
bufile = next(self.files)
p = Process(target=self.load_file, args=(bufile, self.q))
p.start()
except:
self.lastblock = True
else:
fpath = next(self.files)
train, valid = self.load_file(fpath)
self.train_iterator = SequentialIterator(*train, batchsize=self.batchsize, fullbatch=True)
self.valid_iterator = SequentialIterator(*valid, batchsize=self.batchsize, fullbatch=True)
return self.train_iterator, self.valid_iterator
def load_file(self, paths, queue=None):
'''
paths (list or str): []
'''
train = []
valid = []
if isinstance(paths, (list, tuple)):
for path in paths:
X = self.load_func(path)
num_train = len(X) * self.train_valid_ratio[0] * 1.0 / sum(self.train_valid_ratio)
num_train = int(num_train)
train.append(X[:num_train])
valid.append(X[num_train:])
else:
X = self.load_func(paths)
# np.random.shuffle(X)
num_train = len(X) * self.train_valid_ratio[0] * 1.0 / sum(self.train_valid_ratio)
num_train = int(num_train)
train.append(X[:num_train])
valid.append(X[num_train:])
data = [train, valid]
if queue:
queue.put(data)
return data