Skip to content

Latest commit

 

History

History
63 lines (50 loc) · 3.04 KB

INSTALL.md

File metadata and controls

63 lines (50 loc) · 3.04 KB

Set up the python environment

  • NVIDIA GPU with CUDA 11.3 is required

  • Python>=3.8 (installation via anaconda is recommended, use conda create -n mlp_maps python=3.8 to create a conda environment and activate it by conda activate mlp_maps)

  • Python libraries

    • Install pytorch by pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113

    • Install torch-scatter by pip install torch-scatter -f https://data.pyg.org/whl/torch-1.12.0+cu113.html

    • Install kilonerf-cuda

      Option A: Install pre-compiled CUDA extension

      Install pre-compiled CUDA extension
      pip install lib/csrc/kilonerf_cuda/dist/kilonerf_cuda-0.0.0-cp38-cp38-linux_x86_64.whl

      Option B: Build CUDA extension yourself

      Download magma from http://icl.utk.edu/projectsfiles/magma/downloads/magma-2.5.4.tar.gz then build and install to /usr/local/magma

      sudo apt install gfortran libopenblas-dev
      sudo apt-get install freeglut3
      wget http://icl.utk.edu/projectsfiles/magma/downloads/magma-2.5.4.tar.gz
      tar -zxvf magma-2.5.4.tar.gz
      cd magma-2.5.4
      cp make.inc-examples/make.inc.openblas make.inc
      export GPU_TARGET="Maxwell Pascal Volta Turing Ampere"
      export CUDADIR=/usr/local/cuda
      export OPENBLASDIR="/usr"
      make
      sudo -E make install prefix=/usr/local/magma
      

      For further information on installing magma see: http://icl.cs.utk.edu/projectsfiles/magma/doxygen/installing.html

      Finally compile KiloNeRF's C++/CUDA code

      cd lib/csrc/kilonerf_cuda
      python setup.py develop
      # Or use this command: TORCH_CUDA_ARCH_LIST="6.0 7.0 7.5 8.0 8.6+PTX" python setup.py develop
      
    • Install required packages by pip install -r requirements.txt

Set up datasets

ZJU-Mocap dataset

  1. Note that we refine the camera parameters of the ZJU-MoCap dataset. If someone wants to download the ZJU-Mocap dataset, please fill the form to obtain the download link. Another way is filling in the agreement and emailing Sida Peng (pengsida@zju.edu.cn) and cc Xiaowei Zhou (xwzhou@zju.edu.cn) to request the download link.
  2. Create a soft link:
    ROOT=/path/to/mlp_maps
    cd $ROOT/data
    ln -s /path/to/my_zjumocap my_zjumocap
    

NHR dataset

  1. Download the NHR dataset at here and process this data for our code. Or someone could download the processed data at here. Note that both ways require to cite the NHR paper.
  2. Create a soft link:
    ROOT=/path/to/mlp_maps
    cd $ROOT/data
    ln -s /path/to/nhr nhr