-
NVIDIA GPU with CUDA 11.3 is required
-
Python>=3.8 (installation via anaconda is recommended, use
conda create -n mlp_maps python=3.8
to create a conda environment and activate it byconda activate mlp_maps
) -
Python libraries
-
Install pytorch by
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
-
Install torch-scatter by
pip install torch-scatter -f https://data.pyg.org/whl/torch-1.12.0+cu113.html
-
Install kilonerf-cuda
Option A: Install pre-compiled CUDA extension
Install pre-compiled CUDA extension
pip install lib/csrc/kilonerf_cuda/dist/kilonerf_cuda-0.0.0-cp38-cp38-linux_x86_64.whl
Option B: Build CUDA extension yourself
Download magma from http://icl.utk.edu/projectsfiles/magma/downloads/magma-2.5.4.tar.gz then build and install to
/usr/local/magma
sudo apt install gfortran libopenblas-dev sudo apt-get install freeglut3 wget http://icl.utk.edu/projectsfiles/magma/downloads/magma-2.5.4.tar.gz tar -zxvf magma-2.5.4.tar.gz cd magma-2.5.4 cp make.inc-examples/make.inc.openblas make.inc export GPU_TARGET="Maxwell Pascal Volta Turing Ampere" export CUDADIR=/usr/local/cuda export OPENBLASDIR="/usr" make sudo -E make install prefix=/usr/local/magma
For further information on installing magma see: http://icl.cs.utk.edu/projectsfiles/magma/doxygen/installing.html
Finally compile KiloNeRF's C++/CUDA code
cd lib/csrc/kilonerf_cuda python setup.py develop # Or use this command: TORCH_CUDA_ARCH_LIST="6.0 7.0 7.5 8.0 8.6+PTX" python setup.py develop
-
Install required packages by
pip install -r requirements.txt
-
- Note that we refine the camera parameters of the ZJU-MoCap dataset. If someone wants to download the ZJU-Mocap dataset, please fill the form to obtain the download link. Another way is filling in the agreement and emailing Sida Peng (pengsida@zju.edu.cn) and cc Xiaowei Zhou (xwzhou@zju.edu.cn) to request the download link.
- Create a soft link:
ROOT=/path/to/mlp_maps cd $ROOT/data ln -s /path/to/my_zjumocap my_zjumocap
- Download the NHR dataset at here and process this data for our code. Or someone could download the processed data at here. Note that both ways require to cite the NHR paper.
- Create a soft link:
ROOT=/path/to/mlp_maps cd $ROOT/data ln -s /path/to/nhr nhr