-
Notifications
You must be signed in to change notification settings - Fork 134
/
cifar.py
179 lines (146 loc) · 5.96 KB
/
cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import lib.custom_transforms as custom_transforms
import os
import argparse
import time
import models
import datasets
import math
from lib.NCEAverage import NCEAverage
from lib.LinearAverage import LinearAverage
from lib.NCECriterion import NCECriterion
from lib.utils import AverageMeter
from test import NN, kNN
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.03, type=float, help='learning rate')
parser.add_argument('--resume', '-r', default='', type=str, help='resume from checkpoint')
parser.add_argument('--test-only', action='store_true', help='test only')
parser.add_argument('--low-dim', default=128, type=int,
metavar='D', help='feature dimension')
parser.add_argument('--nce-k', default=4096, type=int,
metavar='K', help='number of negative samples for NCE')
parser.add_argument('--nce-t', default=0.1, type=float,
metavar='T', help='temperature parameter for softmax')
parser.add_argument('--nce-m', default=0.5, type=float,
metavar='M', help='momentum for non-parametric updates')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomResizedCrop(size=32, scale=(0.2,1.)),
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
transforms.RandomGrayscale(p=0.2),
#transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = datasets.CIFAR10Instance(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = datasets.CIFAR10Instance(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
ndata = trainset.__len__()
print('==> Building model..')
net = models.__dict__['ResNet18'](low_dim=args.low_dim)
# define leminiscate
if args.nce_k > 0:
lemniscate = NCEAverage(args.low_dim, ndata, args.nce_k, args.nce_t, args.nce_m)
else:
lemniscate = LinearAverage(args.low_dim, ndata, args.nce_t, args.nce_m)
if device == 'cuda':
net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
# Model
if args.test_only or len(args.resume)>0:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/'+args.resume)
net.load_state_dict(checkpoint['net'])
lemniscate = checkpoint['lemniscate']
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
# define loss function
if hasattr(lemniscate, 'K'):
criterion = NCECriterion(ndata)
else:
criterion = nn.CrossEntropyLoss()
net.to(device)
lemniscate.to(device)
criterion.to(device)
if args.test_only:
acc = kNN(0, net, lemniscate, trainloader, testloader, 200, args.nce_t, 1)
sys.exit(0)
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr
if epoch >= 80:
lr = args.lr * (0.1 ** ((epoch-80) // 40))
print(lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
adjust_learning_rate(optimizer, epoch)
train_loss = AverageMeter()
data_time = AverageMeter()
batch_time = AverageMeter()
correct = 0
total = 0
# switch to train mode
net.train()
end = time.time()
for batch_idx, (inputs, targets, indexes) in enumerate(trainloader):
data_time.update(time.time() - end)
inputs, targets, indexes = inputs.to(device), targets.to(device), indexes.to(device)
optimizer.zero_grad()
features = net(inputs)
outputs = lemniscate(features, indexes)
loss = criterion(outputs, indexes)
loss.backward()
optimizer.step()
train_loss.update(loss.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
print('Epoch: [{}][{}/{}]'
'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Data: {data_time.val:.3f} ({data_time.avg:.3f}) '
'Loss: {train_loss.val:.4f} ({train_loss.avg:.4f})'.format(
epoch, batch_idx, len(trainloader), batch_time=batch_time, data_time=data_time, train_loss=train_loss))
for epoch in range(start_epoch, start_epoch+200):
train(epoch)
acc = kNN(epoch, net, lemniscate, trainloader, testloader, 200, args.nce_t, 0)
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'lemniscate': lemniscate,
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.t7')
best_acc = acc
print('best accuracy: {:.2f}'.format(best_acc*100))
acc = kNN(0, net, lemniscate, trainloader, testloader, 200, args.nce_t, 1)
print('last accuracy: {:.2f}'.format(acc*100))