Author: | ZeD@UChicago <zed.uchicago.edu> |
---|---|
Description: | Tools for ML statistics |
Documentation: | https://zeroknowledgediscovery.github.io/zedstat/ |
Example: | https://github.com/zeroknowledgediscovery/zedstat/blob/master/examples/example1.ipynb |
Usage:
from zedstat import zedstat zt=zedstat.processRoc(df=pd.read_csv('roc.csv'), order=3, total_samples=100000, positive_samples=100, alpha=0.01, prevalence=.002) zt.smooth(STEP=0.001) zt.allmeasures(interpolate=True) zt.usample(precision=3) zt.getBounds() print(zt.auc()) # find the high precision and high sensitivity operating points zt.operating_zone(LRminus=.65) rf0,txt0=zt.interpret(fpr=zt._operating_zone.fpr.values[0],number_of_positives=10) rf1,txt1=zt.interpret(fpr=zt._operating_zone.fpr.values[1],number_of_positives=10) display(zt._operating_zone) print('high precision operation:\n','\n '.join(txt0)) print('high recall operation:\n','\n '.join(txt1))