Skip to content

Tools for evaluating and comparing performance of machine learning models

License

Notifications You must be signed in to change notification settings

zeroknowledgediscovery/zedstat

Repository files navigation

zedstat

https://zed.uchicago.edu/logo/logo_zedstat.png

Author:ZeD@UChicago <zed.uchicago.edu>
Description:Tools for ML statistics
Documentation:https://zeroknowledgediscovery.github.io/zedstat/
Example:https://github.com/zeroknowledgediscovery/zedstat/blob/master/examples/example1.ipynb

Usage:

from zedstat import zedstat
zt=zedstat.processRoc(df=pd.read_csv('roc.csv'),
        order=3,
        total_samples=100000,
        positive_samples=100,
        alpha=0.01,
        prevalence=.002)

zt.smooth(STEP=0.001)
zt.allmeasures(interpolate=True)
zt.usample(precision=3)
zt.getBounds()

print(zt.auc())

# find the high precision and high sensitivity operating points
zt.operating_zone(LRminus=.65)
rf0,txt0=zt.interpret(fpr=zt._operating_zone.fpr.values[0],number_of_positives=10)
rf1,txt1=zt.interpret(fpr=zt._operating_zone.fpr.values[1],number_of_positives=10)
display(zt._operating_zone)
print('high precision operation:\n','\n '.join(txt0))
print('high recall operation:\n','\n '.join(txt1))

About

Tools for evaluating and comparing performance of machine learning models

Resources

License

Stars

Watchers

Forks

Packages

No packages published