- PyTorch 1.1 or 1.0.1.
- torchvision 0.2.2.post3
- cocoapi
- yacs
- matplotlib
- GCC >= 4.9
- OpenCV
# first, make sure that your conda is setup properly with the right environment
# for that, check that `which conda`, `which pip` and `which python` points to the
# right path. From a clean conda env, this is what you need to do
conda create --name RDPNet
conda activate RDPNet
# this installs the right pip and dependencies for the fresh python
conda install ipython
# follow PyTorch installation in https://pytorch.org/get-started/locally/
# we give the instructions for CUDA 9.0
# You should install the consistent CUDA vesion which is same with your system's CUDA version!!!
conda install -c pytorch pytorch==1.1 torchvision==0.2.2 cudatoolkit=9.0
export INSTALL_DIR=$PWD
# install pycocotools
pip install pycocotools
# install RDPNet
cd $INSTALL_DIR
git clone https://github.com/yuhuan-wu/RDPNet.git
cd RDPNet
# RDPNet and coco api dependencies
pip install -r requirements.txt
# the following will install the lib with
# symbolic links, so that you can modify
# the files if you want and won't need to
# re-build it
python setup.py build develop
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" .
unset INSTALL_DIR
# or if you are on macOS
# MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py build develop
The following steps are for original maskrcnn-benchmark. Please change the repository name if needed.
Build image with defaults (CUDA=9.0
, CUDNN=7
, FORCE_CUDA=1
):
nvidia-docker build -t maskrcnn-benchmark docker/
Build image with other CUDA and CUDNN versions:
nvidia-docker build -t maskrcnn-benchmark --build-arg CUDA=9.2 --build-arg CUDNN=7 docker/
Build image with FORCE_CUDA disabled:
nvidia-docker build -t maskrcnn-benchmark --build-arg FORCE_CUDA=0 docker/
Build and run image with built-in jupyter notebook(note that the password is used to log in jupyter notebook):
nvidia-docker build -t maskrcnn-benchmark-jupyter docker/docker-jupyter/
nvidia-docker run -td -p 8888:8888 -e PASSWORD=<password> -v <host-dir>:<container-dir> maskrcnn-benchmark-jupyter