Language: 简体中文 | English
There are 5 python files in this folder, which are used for converting MS COCO JSON annotation format to PASCAL VOC XML annotation format (refer to KapilM26/coco2VOC).
The following instructions are for data preparation of MS COCO. Please ensure you have finished the installation in installation.md.
-
Please create a file directory tree as below, where the images and annotations of MS COCO ( train and val ) can be downloaded from here:
Images ( train ): http://images.cocodataset.org/zips/train2017.zip
Images ( val ): http://images.cocodataset.org/zips/val2017.zip
Annotations: http://images.cocodataset.org/annotations/annotations_trainval2017.zip
├── coco (download from official website) │ ├── annotations │ │ ├── instances_train2017.json │ │ ├── instances_val2017.json │ ├── images (combination of train2017 and val2017) │ ├── train2017 │ ├── val2017 ├── coco2voc (manually create) │ ├── Annotations (empty) │ ├── ImageSets │ │ ├── Main (empty) │ ├── JPEGImages (symbol link -> coco/images)
You may also use the following commands directly:
cd $YOUR_DATASET_PATH mkdir coco cd coco wget http://images.cocodataset.org/zips/train2017.zip # it would cost much time unzip train2017.zip # it would cost much time wget http://images.cocodataset.org/zips/val2017.zip unzip val2017.zip wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip unzip annotations_trainval2017.zip mkdir images cp train2017/* images/ cp val2017/* images/ cd ../ mkdir coco2voc mkdir cocovoc/Annotations mkdir coco2voc/ImageSets mkdir coco2voc/ImageSets/Main ln -s coco/images coco2voc/JPEGImages
-
Please modify the corresponding dataset directory in
MIAOD.py
in this folder, they are located in:Line 1: data_root_coco='$YOUR_DATASET_PATH/coco/' Line 2: data_root_voc='$YOUR_DATASET_PATH/coco2voc/'
Please change the
$YOUR_DATASET_PATH
s above to your actual dataset directory (i.e., the directory where you create thecoco
folder).And please use the absolute path (i.e., start with
/
) but not a relative path (i.e., start with./
or../
). -
Please copy these 4 files to the following directory and replace the corresponding original files:
- active_datasets.py -> mmdet/utils/active_datasets.py
- MIAOD.py -> configs/MIAOD.py
- train.py -> tools/train.py
- voc.py -> mmdet/datasets/voc.py
The commands are:
cp active_datasets.py ../mmdet/utils/active_datasets.py cp MIAOD.py ../configs/MIAOD.py cp train.py ../tools/train.py cp voc.py ../mmdet/datasets/voc.py
-
Please install
pascal_voc_writer
package to write PASCAL VOC XML annotation as below.pip install pascal_voc_writer
-
Please convert the MS COCO JSON annotation format to PASCAL VOC XML annotation format as below.
python coco2voc.py \ --ann_file $YOUR_DATASET_PATH/coco/annotations/instances_train2017.json \ --output_dir $YOUR_DATASET_PATH/coco2voc/Annotations/
Please change the
$YOUR_DATASET_PATH
s above to your actual dataset directory (i.e., the directory where you create thecoco
folder).
Now you have finished the data preparation on MS COCO. Please follow here for remaining training and test steps, and please replace --eval mAP
with --eval bbox
in the test step for MS COCO.