-
Notifications
You must be signed in to change notification settings - Fork 221
/
main.lua
432 lines (390 loc) · 16.3 KB
/
main.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
--[[
Trains a word-level or character-level (for inputs) lstm language model
Predictions are still made at the word-level.
Much of the code is borrowed from the following implementations
https://github.com/karpathy/char-rnn
https://github.com/wojzaremba/lstm
]]--
require 'torch'
require 'nn'
require 'nngraph'
require 'lfs'
require 'util.misc'
BatchLoader = require 'util.BatchLoaderUnk'
model_utils = require 'util.model_utils'
local stringx = require('pl.stringx')
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train a word+character-level language model')
cmd:text()
cmd:text('Options')
-- data
cmd:option('-data_dir','data/ptb','data directory. Should contain train.txt/valid.txt/test.txt with input data')
-- model params
cmd:option('-rnn_size', 650, 'size of LSTM internal state')
cmd:option('-use_words', 0, 'use words (1=yes)')
cmd:option('-use_chars', 1, 'use characters (1=yes)')
cmd:option('-highway_layers', 2, 'number of highway layers')
cmd:option('-word_vec_size', 650, 'dimensionality of word embeddings')
cmd:option('-char_vec_size', 15, 'dimensionality of character embeddings')
cmd:option('-feature_maps', '{50,100,150,200,200,200,200}', 'number of feature maps in the CNN')
cmd:option('-kernels', '{1,2,3,4,5,6,7}', 'conv net kernel widths')
cmd:option('-num_layers', 2, 'number of layers in the LSTM')
cmd:option('-dropout',0.5,'dropout. 0 = no dropout')
-- optimization
cmd:option('-hsm',0,'number of clusters to use for hsm. 0 = normal softmax, -1 = use sqrt(|V|)')
cmd:option('-learning_rate',1,'starting learning rate')
cmd:option('-learning_rate_decay',0.5,'learning rate decay')
cmd:option('-decay_when',1,'decay if validation perplexity does not improve by more than this much')
cmd:option('-param_init', 0.05, 'initialize parameters at')
cmd:option('-batch_norm', 0, 'use batch normalization over input embeddings (1=yes)')
cmd:option('-seq_length',35,'number of timesteps to unroll for')
cmd:option('-batch_size',20,'number of sequences to train on in parallel')
cmd:option('-max_epochs',25,'number of full passes through the training data')
cmd:option('-max_grad_norm',5,'normalize gradients at')
cmd:option('-max_word_l',65,'maximum word length')
-- bookkeeping
cmd:option('-seed',3435,'torch manual random number generator seed')
cmd:option('-print_every',500,'how many steps/minibatches between printing out the loss')
cmd:option('-save_every', 5, 'save every n epochs')
cmd:option('-checkpoint_dir', 'cv', 'output directory where checkpoints get written')
cmd:option('-savefile','char','filename to autosave the checkpont to. Will be inside checkpoint_dir/')
cmd:option('-EOS', '+', '<EOS> symbol. should be a single unused character (like +) for PTB and blank for others')
cmd:option('-time', 0, 'print batch times')
-- GPU/CPU
cmd:option('-gpuid', -1,'which gpu to use. -1 = use CPU')
cmd:option('-cudnn', 0,'use cudnn (1=yes). this should greatly speed up convolutions')
cmd:text()
-- parse input params
opt = cmd:parse(arg)
torch.manualSeed(opt.seed)
assert(opt.use_words == 1 or opt.use_words == 0, '-use_words has to be 0 or 1')
assert(opt.use_chars == 1 or opt.use_chars == 0, '-use_chars has to be 0 or 1')
assert((opt.use_chars + opt.use_words) > 0, 'has to use at least one of words or chars')
-- some housekeeping
loadstring('opt.kernels = ' .. opt.kernels)() -- get kernel sizes
loadstring('opt.feature_maps = ' .. opt.feature_maps)() -- get feature map sizes
-- global constants for certain tokens
opt.tokens = {}
opt.tokens.EOS = opt.EOS
opt.tokens.UNK = '|' -- unk word token
opt.tokens.START = '{' -- start-of-word token
opt.tokens.END = '}' -- end-of-word token
opt.tokens.ZEROPAD = ' ' -- zero-pad token
-- load necessary packages depending on config options
if opt.gpuid >= 0 then
print('using CUDA on GPU ' .. opt.gpuid .. '...')
require 'cutorch'
require 'cunn'
cutorch.setDevice(opt.gpuid + 1)
end
if opt.cudnn == 1 then
assert(opt.gpuid >= 0, 'GPU must be used if using cudnn')
print('using cudnn...')
require 'cudnn'
end
-- create the data loader class
loader = BatchLoader.create(opt.data_dir, opt.batch_size, opt.seq_length, opt.max_word_l)
print('Word vocab size: ' .. #loader.idx2word .. ', Char vocab size: ' .. #loader.idx2char
.. ', Max word length (incl. padding): ', loader.max_word_l)
opt.max_word_l = loader.max_word_l
-- if number of clusters is not explicitly provided
if opt.hsm == -1 then
opt.hsm = torch.round(torch.sqrt(#loader.idx2word))
end
if opt.hsm > 0 then
-- partition into opt.hsm clusters
-- we want roughly equal number of words in each cluster
HSMClass = require 'util.HSMClass'
require 'util.HLogSoftMax'
mapping = torch.LongTensor(#loader.idx2word, 2):zero()
local n_in_each_cluster = #loader.idx2word / opt.hsm
local _, idx = torch.sort(torch.randn(#loader.idx2word), 1, true)
local n_in_cluster = {} --number of tokens in each cluster
local c = 1
for i = 1, idx:size(1) do
local word_idx = idx[i]
if n_in_cluster[c] == nil then
n_in_cluster[c] = 1
else
n_in_cluster[c] = n_in_cluster[c] + 1
end
mapping[word_idx][1] = c
mapping[word_idx][2] = n_in_cluster[c]
if n_in_cluster[c] >= n_in_each_cluster then
c = c+1
end
if c > opt.hsm then --take care of some corner cases
c = opt.hsm
end
end
print(string.format('using hierarchical softmax with %d classes', opt.hsm))
end
-- load model objects. we do this here because of cudnn and hsm options
TDNN = require 'model.TDNN'
LSTMTDNN = require 'model.LSTMTDNN'
HighwayMLP = require 'model.HighwayMLP'
-- make sure output directory exists
if not path.exists(opt.checkpoint_dir) then lfs.mkdir(opt.checkpoint_dir) end
-- define the model: prototypes for one timestep, then clone them in time
protos = {}
print('creating an LSTM-CNN with ' .. opt.num_layers .. ' layers')
protos.rnn = LSTMTDNN.lstmtdnn(opt.rnn_size, opt.num_layers, opt.dropout, #loader.idx2word,
opt.word_vec_size, #loader.idx2char, opt.char_vec_size, opt.feature_maps,
opt.kernels, loader.max_word_l, opt.use_words, opt.use_chars,
opt.batch_norm,opt.highway_layers, opt.hsm)
-- training criterion (negative log likelihood)
if opt.hsm > 0 then
protos.criterion = nn.HLogSoftMax(mapping, opt.rnn_size)
else
protos.criterion = nn.ClassNLLCriterion()
end
-- the initial state of the cell/hidden states
init_state = {}
for L=1,opt.num_layers do
local h_init = torch.zeros(opt.batch_size, opt.rnn_size)
if opt.gpuid >=0 then h_init = h_init:cuda() end
table.insert(init_state, h_init:clone())
table.insert(init_state, h_init:clone())
end
-- ship the model to the GPU if desired
if opt.gpuid >= 0 then
for k,v in pairs(protos) do v:cuda() end
end
-- put the above things into one flattened parameters tensor
params, grad_params = model_utils.combine_all_parameters(protos.rnn)
-- hsm has its own params
if opt.hsm > 0 then
hsm_params, hsm_grad_params = protos.criterion:getParameters()
hsm_params:uniform(-opt.param_init, opt.param_init)
print('number of parameters in the model: ' .. params:nElement() + hsm_params:nElement())
else
print('number of parameters in the model: ' .. params:nElement())
end
-- initialization
params:uniform(-opt.param_init, opt.param_init) -- small numbers uniform
-- get layers which will be referenced layer (during SGD or introspection)
function get_layer(layer)
local tn = torch.typename(layer)
if layer.name ~= nil then
if layer.name == 'word_vecs' then
word_vecs = layer
elseif layer.name == 'char_vecs' then
char_vecs = layer
elseif layer.name == 'cnn' then
cnn = layer
end
end
end
protos.rnn:apply(get_layer)
-- make a bunch of clones after flattening, as that reallocates memory
-- not really sure how this part works
clones = {}
for name,proto in pairs(protos) do
print('cloning ' .. name)
clones[name] = model_utils.clone_many_times(proto, opt.seq_length, not proto.parameters)
end
-- for easy switch between using words/chars (or both)
function get_input(x, x_char, t, prev_states)
local u = {}
if opt.use_chars == 1 then table.insert(u, x_char[{{},t}]) end
if opt.use_words == 1 then table.insert(u, x[{{},t}]) end
for i = 1, #prev_states do table.insert(u, prev_states[i]) end
return u
end
-- evaluate the loss over an entire split
function eval_split(split_idx, max_batches)
print('evaluating loss over split index ' .. split_idx)
local n = loader.split_sizes[split_idx]
if opt.hsm > 0 then
protos.criterion:change_bias()
end
if max_batches ~= nil then n = math.min(max_batches, n) end
loader:reset_batch_pointer(split_idx) -- move batch iteration pointer for this split to front
local loss = 0
local rnn_state = {[0] = init_state}
if split_idx<=2 then -- batch eval
for i = 1,n do -- iterate over batches in the split
-- fetch a batch
local x, y, x_char = loader:next_batch(split_idx)
if opt.gpuid >= 0 then -- ship the input arrays to GPU
-- have to convert to float because integers can't be cuda()'d
x = x:float():cuda()
y = y:float():cuda()
x_char = x_char:float():cuda()
end
-- forward pass
for t=1,opt.seq_length do
clones.rnn[t]:evaluate() -- for dropout proper functioning
local lst = clones.rnn[t]:forward(get_input(x, x_char, t, rnn_state[t-1]))
rnn_state[t] = {}
for i=1,#init_state do
table.insert(rnn_state[t], lst[i])
end
prediction = lst[#lst]
loss = loss + clones.criterion[t]:forward(prediction, y[{{}, t}])
end
-- carry over lstm state
rnn_state[0] = rnn_state[#rnn_state]
end
loss = loss / opt.seq_length / n
else -- full eval on test set
local token_perp = torch.zeros(#loader.idx2word, 2)
local x, y, x_char = loader:next_batch(split_idx)
if opt.gpuid >= 0 then -- ship the input arrays to GPU
-- have to convert to float because integers can't be cuda()'d
x = x:float():cuda()
y = y:float():cuda()
x_char = x_char:float():cuda()
end
protos.rnn:evaluate() -- just need one clone
for t = 1, x:size(2) do
local lst = protos.rnn:forward(get_input(x, x_char, t, rnn_state[0]))
rnn_state[0] = {}
for i=1,#init_state do table.insert(rnn_state[0], lst[i]) end
prediction = lst[#lst]
local tok_perp
tok_perp = protos.criterion:forward(prediction, y[{{},t}])
loss = loss + tok_perp
token_perp[y[1][t]][1] = token_perp[y[1][t]][1] + 1 --count
token_perp[y[1][t]][2] = token_perp[y[1][t]][2] + tok_perp
end
loss = loss / x:size(2)
end
local perp = torch.exp(loss)
return perp, token_perp
end
-- do fwd/bwd and return loss, grad_params
local init_state_global = clone_list(init_state)
function feval(x)
if x ~= params then
params:copy(x)
end
grad_params:zero()
if opt.hsm > 0 then
hsm_grad_params:zero()
end
------------------ get minibatch -------------------
local x, y, x_char = loader:next_batch(1) --from train
if opt.gpuid >= 0 then -- ship the input arrays to GPU
-- have to convert to float because integers can't be cuda()'d
x = x:float():cuda()
y = y:float():cuda()
x_char = x_char:float():cuda()
end
------------------- forward pass -------------------
local rnn_state = {[0] = init_state_global}
local predictions = {} -- softmax outputs
local loss = 0
for t=1,opt.seq_length do
clones.rnn[t]:training() -- make sure we are in correct mode (this is cheap, sets flag)
local lst = clones.rnn[t]:forward(get_input(x, x_char, t, rnn_state[t-1]))
rnn_state[t] = {}
for i=1,#init_state do
table.insert(rnn_state[t], lst[i])
end -- extract the state, without output
predictions[t] = lst[#lst] -- last element is the prediction
loss = loss + clones.criterion[t]:forward(predictions[t], y[{{}, t}])
end
loss = loss / opt.seq_length
------------------ backward pass -------------------
-- initialize gradient at time t to be zeros (there's no influence from future)
local drnn_state = {[opt.seq_length] = clone_list(init_state, true)} -- true also zeros the clones
for t=opt.seq_length,1,-1 do
-- backprop through loss, and softmax/linear
local doutput_t = clones.criterion[t]:backward(predictions[t], y[{{}, t}])
table.insert(drnn_state[t], doutput_t)
table.insert(rnn_state[t-1], drnn_state[t])
local dlst = clones.rnn[t]:backward(get_input(x, x_char, t, rnn_state[t-1]), drnn_state[t])
drnn_state[t-1] = {}
local tmp = opt.use_words + opt.use_chars -- not the safest way but quick
for k,v in pairs(dlst) do
if k > tmp then -- k == 1 is gradient on x, which we dont need
-- note we do k-1 because first item is dembeddings, and then follow the
-- derivatives of the state, starting at index 2. I know...
drnn_state[t-1][k-tmp] = v
end
end
end
------------------------ misc ----------------------
-- transfer final state to initial state (BPTT)
init_state_global = rnn_state[#rnn_state] -- NOTE: I don't think this needs to be a clone, right?
-- renormalize gradients
local grad_norm, shrink_factor
if opt.hsm==0 then
grad_norm = grad_params:norm()
else
grad_norm = torch.sqrt(grad_params:norm()^2 + hsm_grad_params:norm()^2)
end
if grad_norm > opt.max_grad_norm then
shrink_factor = opt.max_grad_norm / grad_norm
grad_params:mul(shrink_factor)
if opt.hsm > 0 then
hsm_grad_params:mul(shrink_factor)
end
end
params:add(grad_params:mul(-lr)) -- update params
if opt.hsm > 0 then
hsm_params:add(hsm_grad_params:mul(-lr))
end
return torch.exp(loss)
end
-- start optimization here
train_losses = {}
val_losses = {}
lr = opt.learning_rate -- starting learning rate which will be decayed
local iterations = opt.max_epochs * loader.split_sizes[1]
if char_vecs ~= nil then char_vecs.weight[1]:zero() end -- zero-padding vector is always zero
for i = 1, iterations do
local epoch = i / loader.split_sizes[1]
local timer = torch.Timer()
local time = timer:time().real
train_loss = feval(params) -- fwd/backprop and update params
if char_vecs ~= nil then -- zero-padding vector is always zero
char_vecs.weight[1]:zero()
char_vecs.gradWeight[1]:zero()
end
train_losses[i] = train_loss
-- every now and then or on last iteration
if i % loader.split_sizes[1] == 0 then
-- evaluate loss on validation data
local val_loss = eval_split(2) -- 2 = validation
val_losses[#val_losses+1] = val_loss
local savefile = string.format('%s/lm_%s_epoch%.2f_%.2f.t7', opt.checkpoint_dir, opt.savefile, epoch, val_loss)
local checkpoint = {}
checkpoint.protos = protos
checkpoint.opt = opt
checkpoint.train_losses = train_losses
checkpoint.val_loss = val_loss
checkpoint.val_losses = val_losses
checkpoint.i = i
checkpoint.epoch = epoch
checkpoint.vocab = {loader.idx2word, loader.word2idx, loader.idx2char, loader.char2idx}
checkpoint.lr = lr
print('saving checkpoint to ' .. savefile)
if epoch == opt.max_epochs or epoch % opt.save_every == 0 then
torch.save(savefile, checkpoint)
end
end
-- decay learning rate after epoch
if i % loader.split_sizes[1] == 0 and #val_losses > 2 then
if val_losses[#val_losses-1] - val_losses[#val_losses] < opt.decay_when then
lr = lr * opt.learning_rate_decay
end
end
if i % opt.print_every == 0 then
print(string.format("%d/%d (epoch %.2f), train_loss = %6.4f", i, iterations, epoch, train_loss))
end
if i % 10 == 0 then collectgarbage() end
if opt.time ~= 0 then
print("Batch Time:", timer:time().real - time)
end
end
--evaluate on full test set. this just uses the model from the last epoch
--rather than best-performing model. it is also incredibly inefficient
--because of batch size issues. for faster evaluation, use evaluate.lua, i.e.
--th evaluate.lua -model m
--where m is the path to the best-performing model
test_perp, token_perp = eval_split(3)
print('Perplexity on test set: ' .. test_perp)
torch.save('token_perp-ss.t7', {token_perp, loader.idx2word})