-
Notifications
You must be signed in to change notification settings - Fork 182
/
cfgs_res50_dota1.5_csl_v45.py
79 lines (64 loc) · 2.03 KB
/
cfgs_res50_dota1.5_csl_v45.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# -*- coding: utf-8 -*-
from __future__ import division, print_function, absolute_import
import numpy as np
from alpharotate.utils.pretrain_zoo import PretrainModelZoo
from configs._base_.models.retinanet_r50_fpn import *
from configs._base_.datasets.dota_detection import *
from configs._base_.schedules.schedule_1x import *
# schedule
BATCH_SIZE = 1
GPU_GROUP = "0,1"
NUM_GPU = len(GPU_GROUP.strip().split(','))
SAVE_WEIGHTS_INTE = 32000 * 2
DECAY_STEP = np.array(DECAY_EPOCH, np.int32) * SAVE_WEIGHTS_INTE
MAX_ITERATION = SAVE_WEIGHTS_INTE * MAX_EPOCH
WARM_SETP = int(WARM_EPOCH * SAVE_WEIGHTS_INTE)
# dataset
DATASET_NAME = 'DOTA1.5'
CLASS_NUM = 16
# model
# backbone
pretrain_zoo = PretrainModelZoo()
PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH)
TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights')
# bbox head
ANGLE_RANGE = 180
# loss
CLS_WEIGHT = 1.0
REG_WEIGHT = 1.0
ANGLE_WEIGHT = 2.0
REG_LOSS_MODE = None
# CSL
LABEL_TYPE = 0 # {0: gaussian_label, 1: rectangular_label, 2: pulse_label, 3: triangle_label}
RADIUS = 1
OMEGA = 10
VERSION = 'RetinaNet_DOTA1.5_CSL_2x_20210414'
"""
gaussian label, omega=10
FLOPs: 697510828; Trainable params: 33922611
This is your evaluation result for task 1:
mAP: 0.5854712426655257
ap of each class:
plane:0.7827784330552927,
baseball-diamond:0.7515107165309902,
bridge:0.40132452946731767,
ground-track-field:0.6102084932562825,
small-vehicle:0.46426904540468233,
large-vehicle:0.5084532143309923,
ship:0.7259965936578786,
tennis-court:0.8980010321312986,
basketball-court:0.735872460903648,
storage-tank:0.6046482059720273,
soccer-ball-field:0.5145205345029095,
roundabout:0.6408216451970133,
harbor:0.536169920762916,
swimming-pool:0.6419707154258086,
helicopter:0.45957851150308926,
container-crane:0.09141583054626533
The submitted information is :
Description: RetinaNet_DOTA1.5_CSL_2x_20210414_83.2w
Username: SJTU-Det
Institute: SJTU
Emailadress: yangxue-2019-sjtu@sjtu.edu.cn
TeamMembers: yangxue
"""