We support the following ways to export YOLOX-PAI models.
Original
Original model saves the state dict of model. One should export model in advance to infer an image.
Torch.jit
Torch.jit is used to save the TorchScript model. It can be used independently from Python. It is convenient to be deployed in various environments and has little dependency on hardware. It can also reduce the inference time. For more details, you can refer to the official tutorial: https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html
Blade
Blade Model is used to greatly accelerate the inference process. It combines the technology of computational graph optimization, TensorRT/oneDNN, AI compiler optimization, etc. For more details, you can refer to the official tutorial: https://help.aliyun.com/document_detail/205129.html
End2end
To simplify and accelerate the end2end inference, we support to wrap the preprocess/postprocess process, respectively.
You can choose to export model with or without preprocess/postprocess by setting different configs.
You should install a blade environment first to use blade optimization. See link for instruction.
You are also recommended to use our provided docker image.
sudo docker pull registry.cn-shanghai.aliyuncs.com/pai-ai-test/eas-service:blade_cu111_easycv
python tools/export.py \
${CONFIG_PATH} \
${CHECKPOINT} \
${EXPORT_PATH}
Arguments
CONFIG_PATH
: the config file path of a detection methodCHECKPOINT
:your checkpoint file of a detection method named as epoch_*.pth.EXPORT_PATH
: your path to save export model
Examples:
python tools/export.py configs/detection/yolox/yolox_s_8xb16_300e_coco.py \
work_dirs/detection/yolox/epoch_300.pth \
work_dirs/detection/yolox/epoch_300_export.pth
Export configs:
# default
export = dict(export_type='raw', # exported model type ['raw','jit','blade']
preprocess_jit=True, # whether to save a preprocess jit model
static_opt=True, # whether to use static shape to optimize model
batch_size=1, # batch_size if the static shape
blade_config=dict(
enable_fp16=True,
fp16_fallback_op_ratio=0.05 # fallback to fp32 ratio for blade optimize
# the difference between the fp16 and fp32 results of all layers will be computed
# The layers with larger difference are likely to fallback to fp16
# if the optimized result is not ture, you can choose a larger ratio.
),
use_trt_efficientnms=False) # whether to wrap the trt_nms into model
We allow users to use different combinations of "export_type", "preprocess_jit", and "use_trt_efficientnms" as shown in the Table below to export the model.
Take jit script model as an example. Set the config file as below:
export = dict(export_type='jit',
preprocess_jit=True,
static_opt=True,
batch_size=1,
use_trt_efficientnms=False)
Then, you can obtain the following exported model:
yolox_s.pt.jit
yolox_s.pt.jit.config.json
yolox_s.pt.preprocess (only exists when set preprocess_jit = True)
You can simply use our EasyCV predictor to use the exported model:
import cv2
from easycv.predictors import TorchYoloXPredictor
output_ckpt = 'yolox_s.pt.jit'
detector = TorchYoloXPredictor(output_ckpt,use_trt_efficientnms=False)
img = cv2.imread('000000017627.jpg')
output = detector.predict([img])
print(output)
We highly recommend you to use EasyCV predictor for inference with different export types below. Use YOLOX-s as an example, we test the en2end inference time of different models on a single NVIDIA Tesla V100.
export_type | preprocess_jit | use_trt_efficientnms | Infer time (end2end) /ms |
---|---|---|---|
ori | - | - | 24.58 |
jit | False | False | 18.30 |
jit | False | True | 18.38 |
jit | True | False | 13.44 |
jit | True | True | 13.04 |
blade | False | False | 8.72 |
blade | False | True | 9.39 |
blade | True | False | 3.93 |
blade | True | True | 4.53 |
Or you can use our exported model with a simple environment to deploy our model on your own device:
import io
import torch
import cv2
import numpy as np
import torchvision
# load img
img = cv2.imread('test.jpg')
img = torch.tensor(img).unsqueeze(0).cuda()
# load model
model_path = 'yolox_s.pt.jit'
preprocess_path = '.'.join(
model_path.split('.')[:-1] + ['preprocess'])
with io.open(preprocess_path, 'rb') as infile:
preprocess = torch.jit.load(infile)
with io.open(model_path, 'rb') as infile:
model = torch.jit.load(infile)
# preporcess with the exported model or use your own preprocess func
img, img_info = preprocess(img)
# forward with nms [b,c,h,w] -> List[[n,7]]
# n means the predicted box num of each img
# 7 means [x1,y1,x2,y2,obj_conf,cls_conf,cls]
outputs = model(img)
print(outputs[0].shape)
# postprocess the output information into dict or your own data structure
# slice box,score,class & rescale box
detection_boxes = []
detection_scores = []
detection_classes = []
bboxes = outputs[0][:, 0:4]
bboxes /= img_info['scale_factor'][0]
detection_boxes.append(bboxes.cpu().detach().numpy())
detection_scores.append(
(outputs[0][:, 4] * outputs[0][:, 5]).cpu().detach().numpy())
detection_classes.append(outputs[0][:, 6].cpu().detach().numpy().astype(
np.int32))
final_outputs = {
'detection_boxes': detection_boxes,
'detection_scores': detection_scores,
'detection_classes': detection_classes,
}
print(final_outputs)
Note that we only allow to export an end2end TorchScript Model. For the exported Blade model, NMS is not allowed to be wrapped into the model. You should follow postprocess.py to add the postprocess procedure.