forked from intel/neural-compressor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
55 lines (48 loc) · 2.32 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from neural_compressor.model.model import get_model_fwk_name, MODELS, get_model_type
from neural_compressor.utils import logger
from neural_compressor.utils.utility import get_backend
class Model(object):
"""common Model just collect the infos to construct a Model
"""
def __new__(cls, root, **kwargs):
"""Wrap raw framework model format or path with specific infos
Args:
root: raw model format. For Tensorflow model, could be path to frozen pb file,
path to ckpt or savedmodel folder, loaded estimator/graph_def/graph/keras
model object. For PyTorch model, it's torch.nn.model instance.
For MXNet model, it's mxnet.symbol.Symbol or gluon.HybirdBlock instance.
kwargs: specific model format will rely on extra infomation to build the model
a. estimator: need input_fn to initialize the Model, it will look like this
when initialize an estimator model:
model = Model(estimator_object, input_fn=estimator_input_fn)
"""
backend = get_backend()
framework = get_model_fwk_name(root)
if backend == 'engine':
model = MODELS[backend](root, **kwargs)
elif framework == 'tensorflow':
model_type = get_model_type(root)
model = MODELS['tensorflow'](model_type, root, **kwargs)
elif framework == 'pytorch':
assert backend != 'NA', 'please set pytorch backend'
model = MODELS[backend](root, **kwargs)
else:
model = MODELS[framework](root, **kwargs)
return model