Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

为什么loss为87.33,accuracy为1? #43

Open
changgongcheng opened this issue Dec 5, 2019 · 2 comments
Open

为什么loss为87.33,accuracy为1? #43

changgongcheng opened this issue Dec 5, 2019 · 2 comments

Comments

@changgongcheng
Copy link

为什么把loss设置成arcloss之后,loss为87.33,accuracy为1?
layer {
name: "cosin_add_m"
type: "CosinAddm"
bottom: "concat_fc"
bottom: "label"
top: "fc6_margin"
cosin_add_m_param {
m: 0.5
}
}

layer {
name: "fc6_margin_scale"
type: "Scale"
bottom: "fc6_margin"
top: "fc6_margin_scale"
param {
lr_mult: 0
decay_mult: 0
}
scale_param {
filler{
type: "constant"
value: 64
}
}
}

layer {
name: "concat_loss"
type: "SoftmaxWithLoss"
bottom: "fc6_margin_scale"
bottom: "label"
top: "concat_loss"
}

如果直接是
layer {
name: "concat_loss"
type: "SoftmaxWithLoss"
bottom: "concat_fc"
bottom: "label"
top: "concat_loss"
}
就可以收敛, 搞不清了为什么了

@changgongcheng
Copy link
Author

我用了之前的softmax loss 的模型,作为预训练模型,也还是一样,

@vaan2010
Copy link

同樣問題,不知道有沒有解答

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants