Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

您好,关于实验结果 #20

Open
Aristomd opened this issue Dec 6, 2021 · 5 comments
Open

您好,关于实验结果 #20

Aristomd opened this issue Dec 6, 2021 · 5 comments

Comments

@Aristomd
Copy link

Aristomd commented Dec 6, 2021

我通过readme给的amazon_book数据集给出的设置aug_type=1,reg=10-4 ,embed_size=64,n_layers=3,ssl_reg=0.5,ssl_ratio=0.1,ssl_temp=0.2,运行了代码,其他地方没有变,早停在110代,60代得到最好的结果recall@20结果0.0142 ndcg@20结果0.0119是我哪里没有设置正确嘛,希望您有时间给回复一下,谢谢

@wujcan
Copy link
Owner

wujcan commented Dec 6, 2021

我通过readme给的amazon_book数据集给出的设置aug_type=1,reg=10-4 ,embed_size=64,n_layers=3,ssl_reg=0.5,ssl_ratio=0.1,ssl_temp=0.2,运行了代码,其他地方没有变,早停在110代,60代得到最好的结果recall@20结果0.0142 ndcg@20结果0.0119是我哪里没有设置正确嘛,希望您有时间给回复一下,谢谢

请问reg=10-4还是1e-4?

@Aristomd
Copy link
Author

Aristomd commented Dec 7, 2021

感谢回复,我设置的是1e-4,和readme的一致,上面打错了

@Aristomd
Copy link
Author

Aristomd commented Dec 7, 2021

test_batch_size=128
num_thread=8
start_testing_epoch=0
proj_path=/home/aristold/babyorange/SGL-main/

SGL's hyperparameters:
seed=2021
aug_type=1
reg=1e-4
embed_size=64
n_layers=3
ssl_reg=0.5
ssl_ratio=0.1
ssl_temp=0.2
ssl_mode=both_side
lr=0.0001
learner=adam
adj_type=pre
epochs=1000
batch_size=2048
num_negatives=1
init_method=xavier_uniform
stddev=0.01
verbose=1
stop_cnt=50
pretrain=0
save_flag=0

2021-12-05 12:56:26.889: metrics: Precision@20 Recall@20 NDCG@20 MAP@20 MRR@20
2021-12-05 12:57:04.866: 0.00013678 0.00026791 0.00022005 0.00050896 0.00050821
2021-12-05 13:04:51.081: [iter 1 : loss : 7.0245 = 0.6931 + 6.3314 + 0.0000, time: 459.652283]
2021-12-05 13:05:16.374: epoch 1: 0.00132791 0.00282034 0.00238781 0.00469158 0.00500780
2021-12-05 13:05:16.374: Find a better model.
2021-12-05 13:13:01.724: [iter 2 : loss : 7.0210 = 0.6931 + 6.3279 + 0.0000, time: 458.736247]
2021-12-05 13:13:16.557: epoch 2: 0.00187315 0.00385211 0.00329129 0.00667352 0.00715973
2021-12-05 13:13:16.557: Find a better model.
2021-12-05 13:20:58.046: [iter 3 : loss : 7.0205 = 0.6931 + 6.3274 + 0.0000, time: 455.126777]
2021-12-05 13:21:34.795: epoch 3: 0.00222081 0.00438590 0.00382693 0.00792056 0.00847678
2021-12-05 13:21:34.795: Find a better model.
2021-12-05 13:29:12.667: [iter 4 : loss : 7.0201 = 0.6931 + 6.3270 + 0.0000, time: 451.619277]
2021-12-05 13:29:27.637: epoch 4: 0.00229775 0.00467891 0.00403542 0.00838881 0.00895285
2021-12-05 13:29:27.638: Find a better model.
2021-12-05 13:37:11.258: [iter 5 : loss : 7.0199 = 0.6931 + 6.3268 + 0.0000, time: 457.360852]
2021-12-05 13:37:47.902: epoch 5: 0.00253238 0.00520699 0.00446910 0.00922883 0.00982355
2021-12-05 13:37:47.902: Find a better model.
2021-12-05 13:45:23.563: [iter 6 : loss : 7.0197 = 0.6931 + 6.3266 + 0.0000, time: 449.423811]
2021-12-05 13:45:38.397: epoch 6: 0.00257038 0.00527902 0.00452059 0.00951717 0.00997269
2021-12-05 13:45:38.397: Find a better model.
2021-12-05 13:53:19.403: [iter 7 : loss : 7.0196 = 0.6931 + 6.3265 + 0.0000, time: 454.740660]
2021-12-05 13:53:44.434: epoch 7: 0.00269007 0.00543981 0.00474599 0.00999233 0.01064107
2021-12-05 13:53:44.434: Find a better model.
2021-12-05 14:01:23.863: [iter 8 : loss : 7.0195 = 0.6931 + 6.3264 + 0.0000, time: 453.224072]
2021-12-05 14:01:38.872: epoch 8: 0.00277556 0.00568055 0.00490730 0.01042775 0.01099857
2021-12-05 14:01:38.872: Find a better model.
2021-12-05 14:09:21.684: [iter 9 : loss : 7.0196 = 0.6931 + 6.3265 + 0.0000, time: 456.622367]
2021-12-05 14:09:46.395: epoch 9: 0.00296934 0.00613387 0.00525277 0.01105893 0.01171634
2021-12-05 14:09:46.395: Find a better model.
2021-12-05 14:17:28.172: [iter 10 : loss : 7.0196 = 0.6931 + 6.3265 + 0.0000, time: 455.539485]
2021-12-05 14:17:43.180: epoch 10: 0.00306148 0.00639025 0.00557024 0.01173296 0.01250693
2021-12-05 14:17:43.180: Find a better model.
2021-12-05 14:25:25.439: [iter 11 : loss : 7.0196 = 0.6931 + 6.3265 + 0.0000, time: 456.066938]
2021-12-05 14:25:40.434: epoch 11: 0.00305293 0.00635612 0.00548394 0.01150883 0.01232856
2021-12-05 14:33:23.921: [iter 12 : loss : 7.0195 = 0.6931 + 6.3265 + 0.0000, time: 457.302565]
2021-12-05 14:33:38.757: epoch 12: 0.00312322 0.00657155 0.00559645 0.01163304 0.01237344
2021-12-05 14:33:38.757: Find a better model.
2021-12-05 14:41:17.438: [iter 13 : loss : 7.0194 = 0.6930 + 6.3264 + 0.0000, time: 452.503283]
2021-12-05 14:41:32.544: epoch 13: 0.00319922 0.00675679 0.00584879 0.01259855 0.01332147
2021-12-05 14:41:32.544: Find a better model.
2021-12-05 14:49:11.965: [iter 14 : loss : 7.0195 = 0.6930 + 6.3265 + 0.0000, time: 453.141603]
2021-12-05 14:49:27.231: epoch 14: 0.00326952 0.00685065 0.00581834 0.01220620 0.01290802
2021-12-05 14:49:27.231: Find a better model.
2021-12-05 14:57:02.176: [iter 15 : loss : 7.0194 = 0.6930 + 6.3264 + 0.0000, time: 448.785232]
2021-12-05 14:57:27.019: epoch 15: 0.00335215 0.00703984 0.00592311 0.01225964 0.01300933
2021-12-05 14:57:27.019: Find a better model.
2021-12-05 15:05:01.884: [iter 16 : loss : 7.0194 = 0.6930 + 6.3264 + 0.0000, time: 448.622375]
2021-12-05 15:05:16.885: epoch 16: 0.00342340 0.00734873 0.00616704 0.01288376 0.01369006
2021-12-05 15:05:16.885: Find a better model.
2021-12-05 15:12:57.675: [iter 17 : loss : 7.0195 = 0.6930 + 6.3265 + 0.0000, time: 454.619975]
2021-12-05 15:13:34.364: epoch 17: 0.00354689 0.00756746 0.00643243 0.01377840 0.01449539
2021-12-05 15:13:34.364: Find a better model.
2021-12-05 15:21:14.132: [iter 18 : loss : 7.0195 = 0.6930 + 6.3265 + 0.0000, time: 453.513441]
2021-12-05 15:21:29.185: epoch 18: 0.00359628 0.00770576 0.00652727 0.01354942 0.01437996
2021-12-05 15:21:29.185: Find a better model.
2021-12-05 15:29:09.401: [iter 19 : loss : 7.0194 = 0.6930 + 6.3265 + 0.0000, time: 453.997295]
2021-12-05 15:29:24.430: epoch 19: 0.00375682 0.00804430 0.00691976 0.01461282 0.01553059
2021-12-05 15:29:24.431: Find a better model.
2021-12-05 15:37:03.208: [iter 20 : loss : 7.0195 = 0.6930 + 6.3265 + 0.0000, time: 452.558098]
2021-12-05 15:37:18.240: epoch 20: 0.00378626 0.00818399 0.00706324 0.01473585 0.01580802
2021-12-05 15:37:18.240: Find a better model.
2021-12-05 15:44:58.621: [iter 21 : loss : 7.0195 = 0.6930 + 6.3265 + 0.0000, time: 454.119236]
2021-12-05 15:45:23.750: epoch 21: 0.00382521 0.00824080 0.00706217 0.01497195 0.01580744
2021-12-05 15:45:23.750: Find a better model.
2021-12-05 15:53:01.210: [iter 22 : loss : 7.0195 = 0.6930 + 6.3265 + 0.0000, time: 451.139155]
2021-12-05 15:53:16.148: epoch 22: 0.00383471 0.00833742 0.00716185 0.01526928 0.01616655
2021-12-05 15:53:16.148: Find a better model.
2021-12-05 16:00:55.259: [iter 23 : loss : 7.0196 = 0.6930 + 6.3266 + 0.0000, time: 452.750479]
2021-12-05 16:01:10.433: epoch 23: 0.00387175 0.00839106 0.00715334 0.01490544 0.01578999
2021-12-05 16:01:10.433: Find a better model.
2021-12-05 16:08:54.032: [iter 24 : loss : 7.0195 = 0.6929 + 6.3266 + 0.0000, time: 457.055172]
2021-12-05 16:09:19.121: epoch 24: 0.00407598 0.00893420 0.00758035 0.01575238 0.01672077
2021-12-05 16:09:19.121: Find a better model.
2021-12-05 16:17:01.348: [iter 25 : loss : 7.0195 = 0.6929 + 6.3266 + 0.0000, time: 455.974876]
2021-12-05 16:17:16.424: epoch 25: 0.00411398 0.00893893 0.00763608 0.01591949 0.01692522
2021-12-05 16:17:16.424: Find a better model.
2021-12-05 16:24:58.167: [iter 26 : loss : 7.0195 = 0.6929 + 6.3266 + 0.0000, time: 455.492454]
2021-12-05 16:25:13.235: epoch 26: 0.00413678 0.00892622 0.00776005 0.01651694 0.01748559
2021-12-05 16:32:54.083: [iter 27 : loss : 7.0196 = 0.6929 + 6.3266 + 0.0000, time: 454.570099]
2021-12-05 16:33:09.025: epoch 27: 0.00424222 0.00918396 0.00798166 0.01695715 0.01801449
2021-12-05 16:33:09.025: Find a better model.
2021-12-05 16:40:49.110: [iter 28 : loss : 7.0196 = 0.6929 + 6.3267 + 0.0000, time: 453.716040]
2021-12-05 16:41:14.395: epoch 28: 0.00425267 0.00932975 0.00796766 0.01674358 0.01773234
2021-12-05 16:41:14.395: Find a better model.
2021-12-05 16:48:54.686: [iter 29 : loss : 7.0195 = 0.6929 + 6.3266 + 0.0000, time: 453.964447]
2021-12-05 16:49:09.699: epoch 29: 0.00434861 0.00948785 0.00815338 0.01704596 0.01811074
2021-12-05 16:49:09.700: Find a better model.
2021-12-05 16:56:46.985: [iter 30 : loss : 7.0194 = 0.6929 + 6.3265 + 0.0000, time: 450.972741]
2021-12-05 16:57:01.847: epoch 30: 0.00431537 0.00946431 0.00816453 0.01714017 0.01814647
2021-12-05 17:04:35.941: [iter 31 : loss : 7.0195 = 0.6929 + 6.3267 + 0.0000, time: 447.754553]
2021-12-05 17:04:50.177: epoch 31: 0.00439611 0.00957129 0.00821710 0.01716623 0.01835509
2021-12-05 17:04:50.177: Find a better model.
2021-12-05 17:12:26.226: [iter 32 : loss : 7.0195 = 0.6929 + 6.3266 + 0.0000, time: 449.752640]
2021-12-05 17:13:02.829: epoch 32: 0.00451770 0.00986130 0.00844209 0.01772446 0.01880301
2021-12-05 17:13:02.830: Find a better model.
2021-12-05 17:20:39.239: [iter 33 : loss : 7.0196 = 0.6928 + 6.3268 + 0.0000, time: 450.046607]
2021-12-05 17:20:54.388: epoch 33: 0.00450440 0.00990695 0.00839239 0.01751892 0.01852660
2021-12-05 17:20:54.388: Find a better model.
2021-12-05 17:28:33.896: [iter 34 : loss : 7.0197 = 0.6928 + 6.3268 + 0.0000, time: 453.101452]
2021-12-05 17:28:48.953: epoch 34: 0.00459179 0.01013120 0.00862572 0.01787323 0.01912097
2021-12-05 17:28:48.954: Find a better model.
2021-12-05 17:36:31.329: [iter 35 : loss : 7.0195 = 0.6928 + 6.3267 + 0.0000, time: 456.046334]
2021-12-05 17:36:46.446: epoch 35: 0.00471528 0.01036876 0.00886577 0.01836253 0.01963428
2021-12-05 17:36:46.446: Find a better model.
2021-12-05 17:44:28.458: [iter 36 : loss : 7.0195 = 0.6928 + 6.3267 + 0.0000, time: 455.688246]
2021-12-05 17:44:43.783: epoch 36: 0.00480267 0.01068195 0.00900871 0.01836460 0.01953793
2021-12-05 17:44:43.784: Find a better model.
2021-12-05 17:52:26.747: [iter 37 : loss : 7.0197 = 0.6928 + 6.3269 + 0.0000, time: 456.654295]
2021-12-05 17:52:41.807: epoch 37: 0.00491950 0.01092858 0.00929541 0.01919170 0.02049464
2021-12-05 17:52:41.807: Find a better model.
2021-12-05 18:00:24.097: [iter 38 : loss : 7.0196 = 0.6928 + 6.3268 + 0.0000, time: 455.973511]
2021-12-05 18:00:39.055: epoch 38: 0.00487486 0.01075151 0.00909962 0.01863023 0.01994301
2021-12-05 18:08:24.371: [iter 39 : loss : 7.0196 = 0.6928 + 6.3268 + 0.0000, time: 458.954588]
2021-12-05 18:08:39.426: epoch 39: 0.00501163 0.01123516 0.00939996 0.01923214 0.02044516
2021-12-05 18:08:39.426: Find a better model.
2021-12-05 18:16:24.307: [iter 40 : loss : 7.0194 = 0.6928 + 6.3267 + 0.0000, time: 458.563171]
2021-12-05 18:16:39.232: epoch 40: 0.00505246 0.01121261 0.00943427 0.01916034 0.02048936
2021-12-05 18:24:24.226: [iter 41 : loss : 7.0196 = 0.6927 + 6.3268 + 0.0000, time: 458.713924]
2021-12-05 18:24:39.565: epoch 41: 0.00508856 0.01137946 0.00959330 0.01958583 0.02102214
2021-12-05 18:24:39.565: Find a better model.
2021-12-05 18:32:24.592: [iter 42 : loss : 7.0196 = 0.6927 + 6.3269 + 0.0000, time: 458.704556]
2021-12-05 18:32:39.510: epoch 42: 0.00514459 0.01145933 0.00964090 0.01964627 0.02096677
2021-12-05 18:32:39.510: Find a better model.
2021-12-05 18:40:21.757: [iter 43 : loss : 7.0195 = 0.6927 + 6.3268 + 0.0000, time: 455.934913]
2021-12-05 18:40:36.959: epoch 43: 0.00513034 0.01152364 0.00967478 0.01972248 0.02099582
2021-12-05 18:40:36.959: Find a better model.
2021-12-05 18:48:19.893: [iter 44 : loss : 7.0196 = 0.6927 + 6.3269 + 0.0000, time: 456.655233]
2021-12-05 18:48:34.958: epoch 44: 0.00528609 0.01198155 0.00998714 0.02031140 0.02172996
2021-12-05 18:48:34.959: Find a better model.
2021-12-05 18:56:19.939: [iter 45 : loss : 7.0195 = 0.6927 + 6.3269 + 0.0000, time: 458.758062]
2021-12-05 18:56:34.752: epoch 45: 0.00537157 0.01207599 0.01022530 0.02087627 0.02232079
2021-12-05 18:56:34.752: Find a better model.
2021-12-05 19:04:16.833: [iter 46 : loss : 7.0196 = 0.6927 + 6.3269 + 0.0000, time: 455.773155]
2021-12-05 19:04:31.774: epoch 46: 0.00546939 0.01225831 0.01035970 0.02101806 0.02238646
2021-12-05 19:04:31.774: Find a better model.
2021-12-05 19:12:15.660: [iter 47 : loss : 7.0194 = 0.6926 + 6.3268 + 0.0000, time: 457.651506]
2021-12-05 19:12:40.167: epoch 47: 0.00543900 0.01224850 0.01034556 0.02105800 0.02258649
2021-12-05 19:20:25.024: [iter 48 : loss : 7.0194 = 0.6926 + 6.3268 + 0.0000, time: 458.570422]
2021-12-05 19:20:40.175: epoch 48: 0.00552543 0.01236637 0.01044683 0.02104991 0.02270224
2021-12-05 19:20:40.175: Find a better model.
2021-12-05 19:28:25.734: [iter 49 : loss : 7.0196 = 0.6926 + 6.3270 + 0.0000, time: 459.329278]
2021-12-05 19:28:40.640: epoch 49: 0.00572772 0.01302486 0.01089921 0.02180821 0.02349286
2021-12-05 19:28:40.641: Find a better model.
2021-12-05 19:36:23.583: [iter 50 : loss : 7.0195 = 0.6926 + 6.3269 + 0.0000, time: 456.725160]
2021-12-05 19:36:38.569: epoch 50: 0.00568024 0.01297300 0.01087460 0.02201787 0.02356261
2021-12-05 19:44:30.146: [iter 51 : loss : 7.0195 = 0.6926 + 6.3270 + 0.0000, time: 465.336065]
2021-12-05 19:44:58.155: epoch 51: 0.00568594 0.01305893 0.01086565 0.02155350 0.02312946
2021-12-05 19:44:58.155: Find a better model.
2021-12-05 19:52:33.744: [iter 52 : loss : 7.0194 = 0.6925 + 6.3269 + 0.0000, time: 448.905582]
2021-12-05 19:52:45.650: epoch 52: 0.00568023 0.01292337 0.01095453 0.02213627 0.02382617
2021-12-05 20:00:13.222: [iter 53 : loss : 7.0195 = 0.6925 + 6.3270 + 0.0000, time: 441.661253]
2021-12-05 20:00:25.115: epoch 53: 0.00579326 0.01316035 0.01112485 0.02245538 0.02427685
2021-12-05 20:00:25.115: Find a better model.
2021-12-05 20:07:54.590: [iter 54 : loss : 7.0196 = 0.6925 + 6.3271 + 0.0000, time: 443.529709]
2021-12-05 20:08:06.533: epoch 54: 0.00584548 0.01336121 0.01133410 0.02296268 0.02460670
2021-12-05 20:08:06.533: Find a better model.
2021-12-05 20:15:33.593: [iter 55 : loss : 7.0195 = 0.6925 + 6.3270 + 0.0000, time: 441.160195]
2021-12-05 20:15:45.520: epoch 55: 0.00593097 0.01356471 0.01146245 0.02286122 0.02457688
2021-12-05 20:15:45.520: Find a better model.
2021-12-05 20:23:12.847: [iter 56 : loss : 7.0193 = 0.6924 + 6.3269 + 0.0000, time: 441.422473]
2021-12-05 20:23:34.712: epoch 56: 0.00586070 0.01351548 0.01143924 0.02328570 0.02491733
2021-12-05 20:31:01.886: [iter 57 : loss : 7.0193 = 0.6924 + 6.3269 + 0.0000, time: 441.232511]
2021-12-05 20:31:13.817: epoch 57: 0.00599461 0.01372719 0.01162932 0.02334848 0.02511566
2021-12-05 20:31:13.817: Find a better model.
2021-12-05 20:38:44.462: [iter 58 : loss : 7.0195 = 0.6924 + 6.3271 + 0.0000, time: 444.701456]
2021-12-05 20:38:56.392: epoch 58: 0.00615606 0.01417093 0.01183738 0.02337406 0.02531281
2021-12-05 20:38:56.392: Find a better model.
2021-12-05 20:46:23.693: [iter 59 : loss : 7.0194 = 0.6924 + 6.3271 + 0.0000, time: 441.340626]
2021-12-05 20:46:35.562: epoch 59: 0.00612568 0.01416575 0.01182421 0.02330048 0.02510505
2021-12-05 20:54:12.593: [iter 60 : loss : 7.0194 = 0.6923 + 6.3271 + 0.0000, time: 451.073853]
2021-12-05 20:54:24.560: epoch 60: 0.00622825 0.01424114 0.01186671 0.02320280 0.02496259
2021-12-05 20:54:24.560: Find a better model.
2021-12-05 21:01:51.734: [iter 61 : loss : 7.0195 = 0.6923 + 6.3272 + 0.0000, time: 441.191380]
2021-12-05 21:02:03.683: epoch 61: 0.00617980 0.01409679 0.01173235 0.02282025 0.02471266
2021-12-05 21:09:31.463: [iter 62 : loss : 7.0194 = 0.6923 + 6.3271 + 0.0000, time: 441.811908]
2021-12-05 21:09:52.976: epoch 62: 0.00612377 0.01408938 0.01151136 0.02200436 0.02361411
2021-12-05 21:17:22.170: [iter 63 : loss : 7.0195 = 0.6922 + 6.3272 + 0.0000, time: 443.134542]
2021-12-05 21:17:44.306: epoch 63: 0.00619786 0.01419991 0.01173703 0.02261085 0.02430903
2021-12-05 21:25:11.202: [iter 64 : loss : 7.0194 = 0.6922 + 6.3272 + 0.0000, time: 440.842889]
2021-12-05 21:25:32.814: epoch 64: 0.00611712 0.01407418 0.01146277 0.02203372 0.02360403
2021-12-05 21:32:58.960: [iter 65 : loss : 7.0194 = 0.6922 + 6.3272 + 0.0000, time: 440.115290]
2021-12-05 21:33:10.897: epoch 65: 0.00603355 0.01387637 0.01125738 0.02148712 0.02299993
2021-12-05 21:40:40.168: [iter 66 : loss : 7.0193 = 0.6921 + 6.3271 + 0.0000, time: 443.268090]
2021-12-05 21:41:02.573: epoch 66: 0.00586828 0.01368447 0.01087456 0.02029089 0.02171366
2021-12-05 21:48:30.055: [iter 67 : loss : 7.0192 = 0.6921 + 6.3271 + 0.0000, time: 441.445210]
2021-12-05 21:48:41.892: epoch 67: 0.00573437 0.01326444 0.01061559 0.01990361 0.02135481
2021-12-05 21:56:10.222: [iter 68 : loss : 7.0193 = 0.6920 + 6.3273 + 0.0000, time: 442.316750]
2021-12-05 21:56:32.085: epoch 68: 0.00562325 0.01304924 0.01029860 0.01917918 0.02051006
2021-12-05 22:03:57.293: [iter 69 : loss : 7.0192 = 0.6920 + 6.3272 + 0.0000, time: 439.257188]
2021-12-05 22:04:09.212: epoch 69: 0.00531459 0.01235647 0.00967542 0.01764608 0.01886429
2021-12-05 22:11:34.722: [iter 70 : loss : 7.0191 = 0.6919 + 6.3272 + 0.0000, time: 439.536289]
2021-12-05 22:11:56.763: epoch 70: 0.00511419 0.01196421 0.00919309 0.01640973 0.01758342
2021-12-05 22:19:23.020: [iter 71 : loss : 7.0190 = 0.6919 + 6.3271 + 0.0000, time: 440.296077]
2021-12-05 22:19:34.959: epoch 71: 0.00470577 0.01113341 0.00841814 0.01478392 0.01580842
2021-12-05 22:27:04.263: [iter 72 : loss : 7.0191 = 0.6918 + 6.3273 + 0.0000, time: 443.324044]
2021-12-05 22:27:16.191: epoch 72: 0.00421087 0.01001751 0.00754225 0.01311838 0.01401578
2021-12-05 22:34:42.503: [iter 73 : loss : 7.0191 = 0.6918 + 6.3273 + 0.0000, time: 440.306792]
2021-12-05 22:34:54.420: epoch 73: 0.00373497 0.00884819 0.00659261 0.01130044 0.01212232
2021-12-05 22:42:30.959: [iter 74 : loss : 7.0191 = 0.6917 + 6.3274 + 0.0000, time: 450.574821]
2021-12-05 22:42:52.644: epoch 74: 0.00321631 0.00764889 0.00566053 0.00961025 0.01017764
2021-12-05 22:50:21.163: [iter 75 : loss : 7.0189 = 0.6916 + 6.3273 + 0.0000, time: 442.596739]
2021-12-05 22:50:33.141: epoch 75: 0.00279360 0.00671280 0.00500979 0.00842991 0.00899778
2021-12-05 22:58:02.485: [iter 76 : loss : 7.0188 = 0.6915 + 6.3273 + 0.0000, time: 443.461540]
2021-12-05 22:58:14.344: epoch 76: 0.00239274 0.00573203 0.00424882 0.00700419 0.00750803
2021-12-05 23:05:43.297: [iter 77 : loss : 7.0188 = 0.6914 + 6.3274 + 0.0000, time: 443.060531]
2021-12-05 23:06:04.974: epoch 77: 0.00210492 0.00508974 0.00377772 0.00624910 0.00669846
2021-12-05 23:13:32.538: [iter 78 : loss : 7.0187 = 0.6912 + 6.3274 + 0.0000, time: 441.680732]
2021-12-05 23:13:44.488: epoch 78: 0.00190734 0.00460823 0.00339322 0.00548345 0.00587591
2021-12-05 23:21:21.065: [iter 79 : loss : 7.0185 = 0.6911 + 6.3274 + 0.0000, time: 450.707899]
2021-12-05 23:21:53.432: epoch 79: 0.00175726 0.00420767 0.00312522 0.00506147 0.00546334
2021-12-05 23:29:20.681: [iter 80 : loss : 7.0185 = 0.6909 + 6.3275 + 0.0000, time: 441.362761]
2021-12-05 23:29:32.617: epoch 80: 0.00159673 0.00391464 0.00287082 0.00452690 0.00494191
2021-12-05 23:37:05.764: [iter 81 : loss : 7.0183 = 0.6908 + 6.3276 + 0.0000, time: 447.218974]
2021-12-05 23:37:17.738: epoch 81: 0.00153024 0.00371485 0.00272662 0.00428170 0.00464344
2021-12-05 23:44:44.576: [iter 82 : loss : 7.0182 = 0.6906 + 6.3276 + 0.0000, time: 440.936631]
2021-12-05 23:45:06.373: epoch 82: 0.00143145 0.00355802 0.00256393 0.00393142 0.00424311
2021-12-05 23:52:34.688: [iter 83 : loss : 7.0182 = 0.6904 + 6.3277 + 0.0000, time: 442.357977]
2021-12-05 23:52:46.616: epoch 83: 0.00138015 0.00339230 0.00247185 0.00379365 0.00404782
2021-12-06 00:00:14.692: [iter 84 : loss : 7.0179 = 0.6902 + 6.3277 + 0.0000, time: 442.146669]
2021-12-06 00:00:26.668: epoch 84: 0.00132696 0.00329187 0.00237669 0.00344063 0.00369553
2021-12-06 00:07:51.545: [iter 85 : loss : 7.0178 = 0.6901 + 6.3277 + 0.0000, time: 438.951850]
2021-12-06 00:08:03.550: epoch 85: 0.00124147 0.00312916 0.00224692 0.00316420 0.00341764
2021-12-06 00:15:36.862: [iter 86 : loss : 7.0176 = 0.6899 + 6.3277 + 0.0000, time: 447.411109]
2021-12-06 00:15:58.409: epoch 86: 0.00117593 0.00295947 0.00214289 0.00298925 0.00322400
2021-12-06 00:23:24.209: [iter 87 : loss : 7.0175 = 0.6896 + 6.3278 + 0.0000, time: 439.878778]
2021-12-06 00:23:45.738: epoch 87: 0.00115028 0.00289370 0.00213160 0.00292208 0.00315706
2021-12-06 00:31:13.826: [iter 88 : loss : 7.0174 = 0.6894 + 6.3280 + 0.0000, time: 442.146061]
2021-12-06 00:31:36.553: epoch 88: 0.00116073 0.00294334 0.00216012 0.00291061 0.00316347
2021-12-06 00:39:05.904: [iter 89 : loss : 7.0172 = 0.6892 + 6.3281 + 0.0000, time: 443.322508]
2021-12-06 00:39:38.419: epoch 89: 0.00117498 0.00296385 0.00222362 0.00297300 0.00323986
2021-12-06 00:47:05.030: [iter 90 : loss : 7.0169 = 0.6888 + 6.3281 + 0.0000, time: 440.618102]
2021-12-06 00:47:16.956: epoch 90: 0.00118638 0.00302097 0.00229672 0.00307072 0.00330008
2021-12-06 00:54:46.051: [iter 91 : loss : 7.0166 = 0.6884 + 6.3282 + 0.0000, time: 443.098826]
2021-12-06 00:55:18.420: epoch 91: 0.00121772 0.00304963 0.00237123 0.00313851 0.00340587
2021-12-06 01:02:44.423: [iter 92 : loss : 7.0162 = 0.6880 + 6.3282 + 0.0000, time: 440.005979]
2021-12-06 01:02:56.336: epoch 92: 0.00129086 0.00323482 0.00254144 0.00337641 0.00366420
2021-12-06 01:10:25.089: [iter 93 : loss : 7.0159 = 0.6874 + 6.3284 + 0.0000, time: 442.745171]
2021-12-06 01:10:37.032: epoch 93: 0.00136495 0.00343193 0.00268123 0.00352431 0.00380374
2021-12-06 01:18:03.424: [iter 94 : loss : 7.0155 = 0.6868 + 6.3287 + 0.0000, time: 440.367657]
2021-12-06 01:18:15.339: epoch 94: 0.00142860 0.00355960 0.00278953 0.00366216 0.00395296
2021-12-06 01:25:41.883: [iter 95 : loss : 7.0148 = 0.6860 + 6.3288 + 0.0000, time: 440.544437]
2021-12-06 01:25:53.803: epoch 95: 0.00151884 0.00380152 0.00292057 0.00375638 0.00402883
2021-12-06 01:33:19.575: [iter 96 : loss : 7.0140 = 0.6850 + 6.3290 + 0.0000, time: 439.715856]
2021-12-06 01:33:52.141: epoch 96: 0.00160717 0.00400704 0.00307655 0.00398812 0.00428237
2021-12-06 01:41:17.433: [iter 97 : loss : 7.0133 = 0.6840 + 6.3293 + 0.0000, time: 439.209569]
2021-12-06 01:41:29.360: epoch 97: 0.00168696 0.00421445 0.00324417 0.00425457 0.00459564
2021-12-06 01:48:57.331: [iter 98 : loss : 7.0122 = 0.6827 + 6.3295 + 0.0000, time: 441.973793]
2021-12-06 01:49:29.842: epoch 98: 0.00177530 0.00440754 0.00340438 0.00448283 0.00485716
2021-12-06 01:56:55.100: [iter 99 : loss : 7.0111 = 0.6813 + 6.3298 + 0.0000, time: 439.236126]
2021-12-06 01:57:06.979: epoch 99: 0.00186364 0.00462252 0.00355487 0.00468096 0.00505868
2021-12-06 02:04:32.768: [iter 100 : loss : 7.0096 = 0.6795 + 6.3300 + 0.0000, time: 439.741058]
2021-12-06 02:05:05.075: epoch 100: 0.00197858 0.00490771 0.00377314 0.00502548 0.00546285
2021-12-06 02:12:30.123: [iter 101 : loss : 7.0081 = 0.6776 + 6.3303 + 0.0001, time: 439.015037]
2021-12-06 02:12:42.003: epoch 101: 0.00208876 0.00514782 0.00398300 0.00539391 0.00587074
2021-12-06 02:20:07.962: [iter 102 : loss : 7.0063 = 0.6754 + 6.3308 + 0.0001, time: 439.990550]
2021-12-06 02:20:40.339: epoch 102: 0.00222365 0.00546260 0.00422980 0.00580349 0.00629844
2021-12-06 02:28:05.059: [iter 103 : loss : 7.0042 = 0.6731 + 6.3311 + 0.0001, time: 438.730864]
2021-12-06 02:28:17.023: epoch 103: 0.00238703 0.00587428 0.00453482 0.00627779 0.00685429
2021-12-06 02:35:45.254: [iter 104 : loss : 7.0019 = 0.6703 + 6.3315 + 0.0001, time: 442.267055]
2021-12-06 02:36:17.552: epoch 104: 0.00255041 0.00625586 0.00481888 0.00667220 0.00732710
2021-12-06 02:43:39.883: [iter 105 : loss : 6.9993 = 0.6673 + 6.3320 + 0.0001, time: 436.373894]
2021-12-06 02:43:51.777: epoch 105: 0.00275939 0.00675896 0.00516100 0.00711571 0.00785054
2021-12-06 02:51:19.667: [iter 106 : loss : 6.9967 = 0.6641 + 6.3325 + 0.0001, time: 441.943623]
2021-12-06 02:51:51.895: epoch 106: 0.00294082 0.00724663 0.00550646 0.00768337 0.00844135
2021-12-06 02:59:19.544: [iter 107 : loss : 6.9934 = 0.6604 + 6.3329 + 0.0001, time: 441.667479]
2021-12-06 02:59:31.446: epoch 107: 0.00312510 0.00772439 0.00584424 0.00819701 0.00898288
2021-12-06 03:06:58.468: [iter 108 : loss : 6.9898 = 0.6563 + 6.3334 + 0.0001, time: 441.028302]
2021-12-06 03:07:20.352: epoch 108: 0.00333502 0.00825289 0.00628256 0.00897335 0.00987228
2021-12-06 03:14:46.370: [iter 109 : loss : 6.9862 = 0.6521 + 6.3340 + 0.0001, time: 440.083576]
2021-12-06 03:14:58.362: epoch 109: 0.00356395 0.00884222 0.00670888 0.00962812 0.01058583
2021-12-06 03:22:27.668: [iter 110 : loss : 6.9818 = 0.6472 + 6.3345 + 0.0002, time: 443.393281]
2021-12-06 03:22:39.589: epoch 110: 0.00384037 0.00951267 0.00722792 0.01046697 0.01156572
2021-12-06 03:22:39.589: Early stopping is trigger at epoch: 110
2021-12-06 03:22:39.589: best_result@epoch 60:

2021-12-06 03:22:39.589: 0.0062 0.0142 0.0119
这是训练日志,麻烦您看看是哪里出问题了,非常感谢

@zwb29
Copy link

zwb29 commented Dec 7, 2021

lr=0.001试一下

@Aristomd
Copy link
Author

Aristomd commented Dec 7, 2021

好的感谢,我试一试

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants