Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Won't there be a data breach? #13

Open
Moshibing opened this issue Apr 12, 2024 · 0 comments
Open

Won't there be a data breach? #13

Moshibing opened this issue Apr 12, 2024 · 0 comments

Comments

@Moshibing
Copy link

def cora_generate_features(cora_data):
### 1. 首先获得每个节点的标签,并统计所有可能的类别
node_list = list(cora_data["nodes"].keys())
node2label = dict()
classes = set()
for node_id, info in tqdm(cora_data["nodes"].items()):
label = info["label"].replace("_", " ")
node2label[node_id] = label
classes.add(label)
### 2. 对于每个节点,获得其2-hop邻接子图
node2adj = dict() # 1-hop子图
for (head_id, tail_id), _ in tqdm(cora_data["links"].items()):
if head_id not in node2adj.keys():
node2adj[head_id] = list()
node2adj[head_id].append(tail_id)
node2adj_2hop_triples = dict() # 2-hop子图中的所有三元组
node2adj_2hop_nodes = dict() # 2-hop子图中的所有节点
for node_id, adj in tqdm(node2adj.items()):
if node_id not in node2adj_2hop_triples.keys():
node2adj_2hop_triples[node_id] = set()
node2adj_2hop_nodes[node_id] = {node_id}
for onehop_tail_id in adj:
node2adj_2hop_triples[node_id].add((node_id, onehop_tail_id))
node2adj_2hop_nodes[node_id].add(onehop_tail_id)
if onehop_tail_id in node2adj.keys():
for twohop_tail_id in node2adj[onehop_tail_id]:
# if twohop_tail_id == node_id:
# continue
node2adj_2hop_triples[node_id].add((onehop_tail_id, twohop_tail_id))
node2adj_2hop_nodes[node_id].add(twohop_tail_id)
### 3. 划分训练集/测试集
# 剔除掉可能不存在于graph中的节点
new_node_list = list()
for node_id in node_list:
if node_id in node2adj_2hop_triples.keys():
new_node_list.append(node_id)
shuffle(new_node_list)
test_node_list, train_node_list = new_node_list[:1000], new_node_list[1000:]
print("train num: {}".format(len(train_node_list)))
print("test num: {}".format(len(test_node_list)))
return train_node_list, test_node_list, {
"node2adj_2hop_triples": node2adj_2hop_triples,
"node2adj_2hop_nodes": node2adj_2hop_nodes,
"node2label": node2label,
"classes": classes
}
cora_train_node_list, cora_test_node_list, cora_features = cora_generate_features(cora_data)

Dividing the train_node_list and test_node_list like this ensures that there is no overlap of the target_node, but the neighboring nodes of the train_node will contain the category information of the test_node.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant