All code for the project: Functional connectivity of the human brain investigated using concurrent electrical stimulation and fMRI
OSF link: https://osf.io/pdhfu/
Each projects code
- ./esfmri_connectivity/projectname/
Where project name is a subset of the anlaysis
In the README of each directory it should be clearly stated which data it is acting on and contain a list or execution order. If a Dockerfile has been used for a specific part of the analysis (e.g. fMRIPrep) this should be stated. If nothing is specified, then the main ./Dockerfile is used.
This is a list of docker commands using the docker container of this repository. This assumes that fMRIPrep and fMRIDenoise have been run. To replicate those steps see ./preprocessing/fmriprep/README.md
and ./preprocessing/fmridenoise/README.md
.
Next, navigate to this repositories main directory (where this README file is). This is wto be the working directory when rerunning the commaned.
Next, set the bash variable ESFMRI_DATA
to point to where the BIDS directory is.
ESFMRI_DATA='path/to/data'
It also assumes the fMRIPrep and fMRIdenoise is saved in:
$ESFMRI_DATA/derivatives/fmriprep-1.5.1/fmriprep/
$ESFMRI_DATA/derivatives/denoise/
This is the output if following the steps above.
The parcellation used is included within the repo. But to replicate all the steps to recreate the parcellation see:
Amygdala - see: ./esfmri_connectivity/parcellation/amygdala/README.md
Cerebellum - see: ./esfmri_connectivity/parcellation/cerebellum/README.md
Subcortical - see: ./esfmri_connectivity/parcellation/cerebellum/README.md
Create Smörgåsbord parcellation - see ./esfmri_connectivity/parcellation/README.md
docker run -u esfmri -v $(pwd):/home/esfmri/ -v $ESFMRI_DATA:/data/ -t esfmri python -m esfmri_connectivity.preprocessing.quality_control.find_bad_runs
docker run -u esfmri -v $(pwd):/home/esfmri/ -v $ESFMRI_DATA:/data/ -t esfmri python -m esfmri_connectivity.preprocessing.goodvoxel_masks.create_avgvoxdist
docker run -u esfmri -v $(pwd):/home/esfmri/ -t esfmri python -m esfmri_connectivity.preprocessing.goodvoxel_masks.plot_gmm
docker run -u esfmri -v $(pwd):/home/esfmri/ -t esfmri python -m esfmri_connectivity.preprocessing.goodvoxel_masks.create_mask
docker run -u esfmri -v $(pwd):/home/esfmri/ -v $ESFMRI_DATA:/data/ -t esfmri python -m esfmri_connectivity.preprocessing.extract_timeseries.extract_timeseries
docker run -u esfmri -v $(pwd):/home/esfmri/ -t esfmri python -m esfmri_connectivity.communitydetection.run_communitydetection
docker run -u esfmri -v $(pwd):/home/esfmri/ -t esfmri python -m esfmri_connectivity.stimulation_sites.find_stimulation_parcel
docker run -u esfmri -v $(pwd):/home/esfmri/ -v $ESFMRI_DATA:/data/ -t esfmri python -m esfmri_connectivity.analysis1.calc_fc
docker run -u esfmri -v $(pwd):/home/esfmri/ -t esfmri python -m esfmri_connectivity.analysis1.contrast_and_plot
docker run -u esfmri -v $(pwd):/home/esfmri/ -t esfmri python -m esfmri_connectivity.analysis2.calc_pc_stimsite
docker run -u esfmri -v $(pwd):/home/esfmri/ -t esfmri python -m esfmri_connectivity.analysis2.trainmodels
docker run -u esfmri -v $(pwd):/home/esfmri/ -t esfmri python -m esfmri_connectivity.analysis2.plot_best_model