-
Notifications
You must be signed in to change notification settings - Fork 0
/
cd_plots.py
361 lines (285 loc) · 11.1 KB
/
cd_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
from scipy.stats import rankdata
import numpy as np
import matplotlib.pyplot as plt
import math
from utils import synthetic_dataset_names
def compute_CD(avranks, n, alpha="0.05", test="nemenyi"):
"""
Returns critical difference for Nemenyi or Bonferroni-Dunn test
according to given alpha (either alpha="0.05" or alpha="0.1") for average
ranks and number of tested datasets N. Test can be either "nemenyi" for
for Nemenyi two tailed test or "bonferroni-dunn" for Bonferroni-Dunn test.
"""
k = len(avranks)
d = {("nemenyi", "0.05"): [0, 0, 1.959964, 2.343701, 2.569032, 2.727774,
2.849705, 2.94832, 3.030879, 3.101730, 3.163684,
3.218654, 3.268004, 3.312739, 3.353618, 3.39123,
3.426041, 3.458425, 3.488685, 3.517073,
3.543799],
("nemenyi", "0.1"): [0, 0, 1.644854, 2.052293, 2.291341, 2.459516,
2.588521, 2.692732, 2.779884, 2.854606, 2.919889,
2.977768, 3.029694, 3.076733, 3.119693, 3.159199,
3.195743, 3.229723, 3.261461, 3.291224, 3.319233],
("bonferroni-dunn", "0.05"): [0, 0, 1.960, 2.241, 2.394, 2.498, 2.576,
2.638, 2.690, 2.724, 2.773],
("bonferroni-dunn", "0.1"): [0, 0, 1.645, 1.960, 2.128, 2.241, 2.326,
2.394, 2.450, 2.498, 2.539]}
q = d[(test, alpha)]
cd = q[k] * (k * (k + 1) / (6.0 * n)) ** 0.5
return cd
def graph_ranks(avranks, names, cd=None, cdmethod=None, lowv=None, highv=None,
width=6, textspace=1, reverse=False, filename=None, **kwargs):
"""
Draws a CD graph, which is used to display the differences in methods'
performance. See Janez Demsar, Statistical Comparisons of Classifiers over
Multiple Data Sets, 7(Jan):1--30, 2006.
Needs matplotlib to work.
The image is ploted on `plt` imported using
`import matplotlib.pyplot as plt`.
Args:
avranks (list of float): average ranks of methods.
names (list of str): names of methods.
cd (float): Critical difference used for statistically significance of
difference between methods.
cdmethod (int, optional): the method that is compared with other methods
If omitted, show pairwise comparison of methods
lowv (int, optional): the lowest shown rank
highv (int, optional): the highest shown rank
width (int, optional): default width in inches (default: 6)
textspace (int, optional): space on figure sides (in inches) for the
method names (default: 1)
reverse (bool, optional): if set to `True`, the lowest rank is on the
right (default: `False`)
filename (str, optional): output file name (with extension). If not
given, the function does not write a file.
"""
try:
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
except ImportError:
raise ImportError("Function graph_ranks requires matplotlib.")
width = float(width)
textspace = float(textspace)
def nth(l, n):
"""
Returns only nth elemnt in a list.
"""
n = lloc(l, n)
return [a[n] for a in l]
def lloc(l, n):
"""
List location in list of list structure.
Enable the use of negative locations:
-1 is the last element, -2 second last...
"""
if n < 0:
return len(l[0]) + n
else:
return n
def mxrange(lr):
"""
Multiple xranges. Can be used to traverse matrices.
This function is very slow due to unknown number of
parameters.
>>> mxrange([3,5])
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]
>>> mxrange([[3,5,1],[9,0,-3]])
[(3, 9), (3, 6), (3, 3), (4, 9), (4, 6), (4, 3)]
"""
if not len(lr):
yield ()
else:
# it can work with single numbers
index = lr[0]
if isinstance(index, int):
index = [index]
for a in range(*index):
for b in mxrange(lr[1:]):
yield tuple([a] + list(b))
def print_figure(fig, *args, **kwargs):
canvas = FigureCanvasAgg(fig)
canvas.print_figure(*args, **kwargs)
sums = avranks
tempsort = sorted([(a, i) for i, a in enumerate(sums)], reverse=reverse)
ssums = nth(tempsort, 0)
sortidx = nth(tempsort, 1)
nnames = [names[x] for x in sortidx]
if lowv is None:
lowv = min(1, int(math.floor(min(ssums))))
if highv is None:
highv = max(len(avranks), int(math.ceil(max(ssums))))
cline = 0.4
k = len(sums)
lines = None
linesblank = 0
scalewidth = width - 2 * textspace
def rankpos(rank):
if not reverse:
a = rank - lowv
else:
a = highv - rank
return textspace + scalewidth / (highv - lowv) * a
distanceh = 0.25
if cd and cdmethod is None:
# get pairs of non significant methods
def get_lines(sums, hsd):
# get all pairs
lsums = len(sums)
allpairs = [(i, j)
for i, j in mxrange([[lsums], [lsums]]) if j > i]
# remove not significant
notSig = [(i, j) for i, j in allpairs
if abs(sums[i] - sums[j]) <= hsd]
# keep only longest
def no_longer(ij_tuple, notSig):
i, j = ij_tuple
for i1, j1 in notSig:
if (i1 <= i and j1 > j) or (i1 < i and j1 >= j):
return False
return True
longest = [(i, j) for i, j in notSig if no_longer((i, j), notSig)]
return longest
lines = get_lines(ssums, cd)
linesblank = 0.2 + 0.2 + (len(lines) - 1) * 0.1
# add scale
distanceh = 0.25
cline += distanceh
# calculate height needed height of an image
minnotsignificant = max(2 * 0.2, linesblank)
height = cline + ((k + 1) / 2) * 0.2 + minnotsignificant
fig = plt.figure(figsize=(width, height))
fig.set_facecolor('white')
ax = fig.add_axes([0, 0, 1, 1]) # reverse y axis
ax.set_axis_off()
hf = 1. / height # height factor
wf = 1. / width
def hfl(l):
return [a * hf for a in l]
def wfl(l):
return [a * wf for a in l]
# Upper left corner is (0,0).
ax.plot([0, 1], [0, 1], c="w")
ax.set_xlim(0, 1)
ax.set_ylim(1, 0)
def line(l, color='k', **kwargs):
"""
Input is a list of pairs of points.
"""
ax.plot(wfl(nth(l, 0)), hfl(nth(l, 1)), color=color, **kwargs)
def text(x, y, s, *args, **kwargs):
ax.text(wf * x, hf * y, s, *args, **kwargs)
line([(textspace, cline), (width - textspace, cline)], linewidth=0.7)
bigtick = 0.1
smalltick = 0.05
tick = None
for a in list(np.arange(lowv, highv, 0.5)) + [highv]:
tick = smalltick
if a == int(a):
tick = bigtick
line([(rankpos(a), cline - tick / 2),
(rankpos(a), cline)],
linewidth=0.7)
for a in range(lowv, highv + 1):
text(rankpos(a), cline - tick / 2 - 0.05, str(a),
ha="center", va="bottom")
k = len(ssums)
for i in range(math.ceil(k / 2)):
chei = cline + minnotsignificant + i * 0.2
line([(rankpos(ssums[i]), cline),
(rankpos(ssums[i]), chei),
(textspace - 0.1, chei)],
linewidth=0.7)
text(textspace - 0.2, chei, nnames[i], ha="right", va="center")
for i in range(math.ceil(k / 2), k):
chei = cline + minnotsignificant + (k - i - 1) * 0.2
line([(rankpos(ssums[i]), cline),
(rankpos(ssums[i]), chei),
(textspace + scalewidth + 0.1, chei)],
linewidth=0.7)
text(textspace + scalewidth + 0.2, chei, nnames[i],
ha="left", va="center")
if cd and cdmethod is None:
# upper scale
if not reverse:
begin, end = rankpos(lowv), rankpos(lowv + cd)
else:
begin, end = rankpos(highv), rankpos(highv - cd)
line([(begin, distanceh), (end, distanceh)], linewidth=0.7)
line([(begin, distanceh + bigtick / 2),
(begin, distanceh - bigtick / 2)],
linewidth=0.7)
line([(end, distanceh + bigtick / 2),
(end, distanceh - bigtick / 2)],
linewidth=0.7)
text((begin + end) / 2, distanceh - 0.05, "CD",
ha="center", va="bottom")
# no-significance lines
def draw_lines(lines, side=0.05, height=0.1):
start = cline + 0.2
for l, r in lines:
line([(rankpos(ssums[l]) - side, start),
(rankpos(ssums[r]) + side, start)],
linewidth=2.5)
start += height
draw_lines(lines)
elif cd:
begin = rankpos(avranks[cdmethod] - cd)
end = rankpos(avranks[cdmethod] + cd)
line([(begin, cline), (end, cline)],
linewidth=2.5)
line([(begin, cline + bigtick / 2),
(begin, cline - bigtick / 2)],
linewidth=2.5)
line([(end, cline + bigtick / 2),
(end, cline - bigtick / 2)],
linewidth=2.5)
if filename:
print_figure(fig, filename, **kwargs)
#############################################################################
# Tutaj powinny być wyniki o kształcie: (zbiory, metody)
res = np.load('results/E2_syn.npy')
res = np.mean(res, axis=1)
# Podział na syntetyczne istniejące i na nasze
dataset_names = synthetic_dataset_names()
dataset_names = [d.split('_rs')[0] for d in dataset_names]
method_names = ['KNN', 'GNB', 'SVM', 'MLP', 'DPL-none', 'DPL-sqrt', 'DPL-log', 'DPL-std']
order = np.argsort(dataset_names)
res = res[order]
dataset_names = np.array(dataset_names)[order]
res_others = res[:99]
res_others = res_others.reshape((3,-1,8))
res_others = np.mean(res_others, axis=0)
res_ours = res[99:]
### Other ###
ranks = []
for row in res_others:
ranks.append(rankdata(row).tolist())
ranks = np.array(ranks)
av_ranks = np.mean(ranks, axis=0)
cd = compute_CD(av_ranks, res_others.shape[0])
graph_ranks(av_ranks, method_names, cd=cd, width=6, textspace=1.5)
plt.savefig("figures/cd_syn_other.png")
plt.savefig("foo.png")
### Our ###
ranks = []
for row in res_ours:
ranks.append(rankdata(row).tolist())
ranks = np.array(ranks)
av_ranks = np.mean(ranks, axis=0)
cd = compute_CD(av_ranks, res_ours.shape[0])
graph_ranks(av_ranks, method_names, cd=cd, width=6, textspace=1.5)
plt.savefig("figures/cd_syn_our.png")
plt.savefig("foo.png")
### Real ###
res = np.load('results/E2_real.npy')
res = np.mean(res, axis=1)
print(res.shape)
ranks = []
for row in res:
ranks.append(rankdata(row).tolist())
ranks = np.array(ranks)
av_ranks = np.mean(ranks, axis=0)
cd = compute_CD(av_ranks, res.shape[0])
graph_ranks(av_ranks, method_names, cd=cd, width=6, textspace=1.5)
plt.savefig("figures/cd_real.png")
plt.savefig("foo.png")