forked from qfgaohao/pytorch-ssd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_ssd.py
219 lines (201 loc) · 10.1 KB
/
eval_ssd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
from vision.ssd.vgg_ssd import create_vgg_ssd, create_vgg_ssd_predictor
from vision.ssd.mobilenetv1_ssd import create_mobilenetv1_ssd, create_mobilenetv1_ssd_predictor
from vision.ssd.mobilenetv1_ssd_lite import create_mobilenetv1_ssd_lite, create_mobilenetv1_ssd_lite_predictor
from vision.ssd.squeezenet_ssd_lite import create_squeezenet_ssd_lite, create_squeezenet_ssd_lite_predictor
from vision.datasets.voc_dataset import VOCDataset
from vision.datasets.open_images import OpenImagesDataset
from vision.utils import box_utils, measurements
from vision.utils.misc import str2bool, Timer
import argparse
import pathlib
import numpy as np
import logging
import sys
from vision.ssd.mobilenet_v2_ssd_lite import create_mobilenetv2_ssd_lite, create_mobilenetv2_ssd_lite_predictor
from vision.ssd.mobilenetv3_ssd_lite import create_mobilenetv3_large_ssd_lite, create_mobilenetv3_small_ssd_lite
parser = argparse.ArgumentParser(description="SSD Evaluation on VOC Dataset.")
parser.add_argument('--net', default="vgg16-ssd",
help="The network architecture, it should be of mb1-ssd, mb1-ssd-lite, mb2-ssd-lite or vgg16-ssd.")
parser.add_argument("--trained_model", type=str)
parser.add_argument("--dataset_type", default="voc", type=str,
help='Specify dataset type. Currently support voc and open_images.')
parser.add_argument("--dataset", type=str, help="The root directory of the VOC dataset or Open Images dataset.")
parser.add_argument("--label_file", type=str, help="The label file path.")
parser.add_argument("--use_cuda", type=str2bool, default=True)
parser.add_argument("--use_2007_metric", type=str2bool, default=True)
parser.add_argument("--nms_method", type=str, default="hard")
parser.add_argument("--iou_threshold", type=float, default=0.5, help="The threshold of Intersection over Union.")
parser.add_argument("--eval_dir", default="eval_results", type=str, help="The directory to store evaluation results.")
parser.add_argument('--mb2_width_mult', default=1.0, type=float,
help='Width Multiplifier for MobilenetV2')
args = parser.parse_args()
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() and args.use_cuda else "cpu")
def group_annotation_by_class(dataset):
true_case_stat = {}
all_gt_boxes = {}
all_difficult_cases = {}
for i in range(len(dataset)):
image_id, annotation = dataset.get_annotation(i)
gt_boxes, classes, is_difficult = annotation
gt_boxes = torch.from_numpy(gt_boxes)
for i, difficult in enumerate(is_difficult):
class_index = int(classes[i])
gt_box = gt_boxes[i]
if not difficult:
true_case_stat[class_index] = true_case_stat.get(class_index, 0) + 1
if class_index not in all_gt_boxes:
all_gt_boxes[class_index] = {}
if image_id not in all_gt_boxes[class_index]:
all_gt_boxes[class_index][image_id] = []
all_gt_boxes[class_index][image_id].append(gt_box)
if class_index not in all_difficult_cases:
all_difficult_cases[class_index]={}
if image_id not in all_difficult_cases[class_index]:
all_difficult_cases[class_index][image_id] = []
all_difficult_cases[class_index][image_id].append(difficult)
for class_index in all_gt_boxes:
for image_id in all_gt_boxes[class_index]:
all_gt_boxes[class_index][image_id] = torch.stack(all_gt_boxes[class_index][image_id])
for class_index in all_difficult_cases:
for image_id in all_difficult_cases[class_index]:
all_gt_boxes[class_index][image_id] = torch.tensor(all_gt_boxes[class_index][image_id])
return true_case_stat, all_gt_boxes, all_difficult_cases
def compute_average_precision_per_class(num_true_cases, gt_boxes, difficult_cases,
prediction_file, iou_threshold, use_2007_metric):
with open(prediction_file) as f:
image_ids = []
boxes = []
scores = []
for line in f:
t = line.rstrip().split(" ")
image_ids.append(t[0])
scores.append(float(t[1]))
box = torch.tensor([float(v) for v in t[2:]]).unsqueeze(0)
box -= 1.0 # convert to python format where indexes start from 0
boxes.append(box)
scores = np.array(scores)
sorted_indexes = np.argsort(-scores)
boxes = [boxes[i] for i in sorted_indexes]
image_ids = [image_ids[i] for i in sorted_indexes]
true_positive = np.zeros(len(image_ids))
false_positive = np.zeros(len(image_ids))
matched = set()
for i, image_id in enumerate(image_ids):
box = boxes[i]
if image_id not in gt_boxes:
false_positive[i] = 1
continue
gt_box = gt_boxes[image_id]
ious = box_utils.iou_of(box, gt_box)
max_iou = torch.max(ious).item()
max_arg = torch.argmax(ious).item()
if max_iou > iou_threshold:
if difficult_cases[image_id][max_arg] == 0:
if (image_id, max_arg) not in matched:
true_positive[i] = 1
matched.add((image_id, max_arg))
else:
false_positive[i] = 1
else:
false_positive[i] = 1
true_positive = true_positive.cumsum()
false_positive = false_positive.cumsum()
precision = true_positive / (true_positive + false_positive)
recall = true_positive / num_true_cases
if use_2007_metric:
return measurements.compute_voc2007_average_precision(precision, recall)
else:
return measurements.compute_average_precision(precision, recall)
if __name__ == '__main__':
eval_path = pathlib.Path(args.eval_dir)
eval_path.mkdir(exist_ok=True)
timer = Timer()
class_names = [name.strip() for name in open(args.label_file).readlines()]
if args.dataset_type == "voc":
dataset = VOCDataset(args.dataset, is_test=True)
elif args.dataset_type == 'open_images':
dataset = OpenImagesDataset(args.dataset, dataset_type="test")
true_case_stat, all_gb_boxes, all_difficult_cases = group_annotation_by_class(dataset)
if args.net == 'vgg16-ssd':
net = create_vgg_ssd(len(class_names), is_test=True)
elif args.net == 'mb1-ssd':
net = create_mobilenetv1_ssd(len(class_names), is_test=True)
elif args.net == 'mb1-ssd-lite':
net = create_mobilenetv1_ssd_lite(len(class_names), is_test=True)
elif args.net == 'sq-ssd-lite':
net = create_squeezenet_ssd_lite(len(class_names), is_test=True)
elif args.net == 'mb2-ssd-lite':
net = create_mobilenetv2_ssd_lite(len(class_names), width_mult=args.mb2_width_mult, is_test=True)
elif args.net == 'mb3-large-ssd-lite':
net = create_mobilenetv3_large_ssd_lite(len(class_names), is_test=True)
elif args.net == 'mb3-small-ssd-lite':
net = create_mobilenetv3_small_ssd_lite(len(class_names), is_test=True)
else:
logging.fatal("The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite.")
parser.print_help(sys.stderr)
sys.exit(1)
timer.start("Load Model")
net.load(args.trained_model)
net = net.to(DEVICE)
print(f'It took {timer.end("Load Model")} seconds to load the model.')
if args.net == 'vgg16-ssd':
predictor = create_vgg_ssd_predictor(net, nms_method=args.nms_method, device=DEVICE)
elif args.net == 'mb1-ssd':
predictor = create_mobilenetv1_ssd_predictor(net, nms_method=args.nms_method, device=DEVICE)
elif args.net == 'mb1-ssd-lite':
predictor = create_mobilenetv1_ssd_lite_predictor(net, nms_method=args.nms_method, device=DEVICE)
elif args.net == 'sq-ssd-lite':
predictor = create_squeezenet_ssd_lite_predictor(net,nms_method=args.nms_method, device=DEVICE)
elif args.net == 'mb2-ssd-lite' or args.net == "mb3-large-ssd-lite" or args.net == "mb3-small-ssd-lite":
predictor = create_mobilenetv2_ssd_lite_predictor(net, nms_method=args.nms_method, device=DEVICE)
else:
logging.fatal("The net type is wrong. It should be one of vgg16-ssd, mb1-ssd and mb1-ssd-lite.")
parser.print_help(sys.stderr)
sys.exit(1)
results = []
for i in range(len(dataset)):
print("process image", i)
timer.start("Load Image")
image = dataset.get_image(i)
print("Load Image: {:4f} seconds.".format(timer.end("Load Image")))
timer.start("Predict")
boxes, labels, probs = predictor.predict(image)
print("Prediction: {:4f} seconds.".format(timer.end("Predict")))
indexes = torch.ones(labels.size(0), 1, dtype=torch.float32) * i
results.append(torch.cat([
indexes.reshape(-1, 1),
labels.reshape(-1, 1).float(),
probs.reshape(-1, 1),
boxes + 1.0 # matlab's indexes start from 1
], dim=1))
results = torch.cat(results)
for class_index, class_name in enumerate(class_names):
if class_index == 0: continue # ignore background
prediction_path = eval_path / f"det_test_{class_name}.txt"
with open(prediction_path, "w") as f:
sub = results[results[:, 1] == class_index, :]
for i in range(sub.size(0)):
prob_box = sub[i, 2:].numpy()
image_id = dataset.ids[int(sub[i, 0])]
print(
image_id + " " + " ".join([str(v) for v in prob_box]),
file=f
)
aps = []
print("\n\nAverage Precision Per-class:")
for class_index, class_name in enumerate(class_names):
if class_index == 0:
continue
prediction_path = eval_path / f"det_test_{class_name}.txt"
ap = compute_average_precision_per_class(
true_case_stat[class_index],
all_gb_boxes[class_index],
all_difficult_cases[class_index],
prediction_path,
args.iou_threshold,
args.use_2007_metric
)
aps.append(ap)
print(f"{class_name}: {ap}")
print(f"\nAverage Precision Across All Classes:{sum(aps)/len(aps)}")