Skip to content

Latest commit

 

History

History
62 lines (46 loc) · 2.48 KB

README.md

File metadata and controls

62 lines (46 loc) · 2.48 KB

gated-Transformer

Gated Pretrained Transformer model for robust denoised sequence-to-sequence modeling. It uses a gating unit to detect and correct noises from text data and generate de-noised target from a generative decoder.

gated-Transformer

In this work we conduct our experiment on three tasks -

  • Denoising corrputed text
  • Denoised machine translation
  • Denoise summarization

gated-Transformer is shown effective on -

  • OCR noise
  • Random spelling mistakes
  • Keyboard based noises
  • Insertion, Deletion, Swapping based noises

Installation for experiments

$ pip install -r requirements.txt

Commands to run

Training a denoiser

pretrained transformer sequence-to-sequence model (e.g. - BART, T5)

$ cd ./drive/MyDrive/gated-denoise/ && python train.py --train_file ./data.csv \
                                                  --model_path ./model/ --model_type bart --pretrained_encoder_path "facebook/bart-base" \
                                                  --mask_gate --copy_gate --generate_gate --skip_gate \
                                                  --epochs 15

Transformer encoder-decoder model (e.g. - BERT2BERT)

$ cd ./drive/MyDrive/gated-denoise/ && python train.py --train_file ./data.csv \
                                                  --model_path ./model/ --model_type seq2seq \
                                                  --pretrained_encoder_path "bert-base-uncased" --pretrained_decoder_path "bert-base-uncased" \
                                                  --mask_gate --copy_gate --generate_gate --skip_gate \
                                                  --epochs 15

Inference

$ cd ./drive/MyDrive/gated-denoise/ && python predict.py --data_file ./data.csv \
                                                  --model_path ./model/ --model_type bart --pretrained_encoder_path "facebook/bart-base" \
                                                  --mask_gate --copy_gate --generate_gate --skip_gate 

Citation

If you find this repo useful, please cite our paper:

@inproceedings{,
  author    = {Ayan Sengupta and
               Amit Kumar and
               Sourabh Kumar Bhattacharjee and
               Suman Roy},
  title     = {Gated Transformer for Robust De-noised Sequence-to-Sequence Modelling},
  booktitle = {},
  publisher = {},
  year      = {},
  url       = {},
  doi       = {},
}