forked from sdrangan/wirelesscomm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prob_coding.tex
327 lines (297 loc) · 10.5 KB
/
prob_coding.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
\documentclass[11pt]{article}
\usepackage{fullpage}
\usepackage{amsmath, amssymb, bm, cite, epsfig, psfrag}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{listings}
\usepackage{cite}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage{enumitem}
\usetikzlibrary{shapes,arrows}
\usepackage{mdframed}
\usepackage{mcode}
\usepackage{siunitx}
%\usetikzlibrary{dsp,chains}
%\restylefloat{figure}
%\theoremstyle{plain} \newtheorem{theorem}{Theorem}
%\theoremstyle{definition} \newtheorem{definition}{Definition}
\def\del{\partial}
\def\ds{\displaystyle}
\def\ts{\textstyle}
\def\beq{\begin{equation}}
\def\eeq{\end{equation}}
\def\beqa{\begin{eqnarray}}
\def\eeqa{\end{eqnarray}}
\def\beqan{\begin{eqnarray*}}
\def\eeqan{\end{eqnarray*}}
\def\nn{\nonumber}
\def\binomial{\mathop{\mathrm{binomial}}}
\def\half{{\ts\frac{1}{2}}}
\def\Half{{\frac{1}{2}}}
\def\N{{\mathbb{N}}}
\def\Z{{\mathbb{Z}}}
\def\Q{{\mathbb{Q}}}
\def\R{{\mathbb{R}}}
\def\C{{\mathbb{C}}}
\def\argmin{\mathop{\mathrm{arg\,min}}}
\def\argmax{\mathop{\mathrm{arg\,max}}}
%\def\span{\mathop{\mathrm{span}}}
\def\diag{\mathop{\mathrm{diag}}}
\def\x{\times}
\def\limn{\lim_{n \rightarrow \infty}}
\def\liminfn{\liminf_{n \rightarrow \infty}}
\def\limsupn{\limsup_{n \rightarrow \infty}}
\def\MID{\,|\,}
\def\MIDD{\,;\,}
\newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{assumption}{Assumption}
\newtheorem{claim}{Claim}
\def\qed{\mbox{} \hfill $\Box$}
\setlength{\unitlength}{1mm}
\def\bhat{\widehat{b}}
\def\ehat{\widehat{e}}
\def\phat{\widehat{p}}
\def\qhat{\widehat{q}}
\def\rhat{\widehat{r}}
\def\shat{\widehat{s}}
\def\uhat{\widehat{u}}
\def\ubar{\overline{u}}
\def\vhat{\widehat{v}}
\def\xhat{\widehat{x}}
\def\xbar{\overline{x}}
\def\zhat{\widehat{z}}
\def\zbar{\overline{z}}
\def\la{\leftarrow}
\def\ra{\rightarrow}
\def\MSE{\mbox{\small \sffamily MSE}}
\def\SNR{\mbox{\small \sffamily SNR}}
\def\SINR{\mbox{\small \sffamily SINR}}
\def\arr{\rightarrow}
\def\Exp{\mathbb{E}}
\def\var{\mbox{var}}
\def\Tr{\mbox{Tr}}
\def\tm1{t\! - \! 1}
\def\tp1{t\! + \! 1}
\def\Xset{{\cal X}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\abf}{\mathbf{a}}
\newcommand{\bbf}{\mathbf{b}}
\newcommand{\dbf}{\mathbf{d}}
\newcommand{\ebf}{\mathbf{e}}
\newcommand{\gbf}{\mathbf{g}}
\newcommand{\hbf}{\mathbf{h}}
\newcommand{\pbf}{\mathbf{p}}
\newcommand{\pbfhat}{\widehat{\mathbf{p}}}
\newcommand{\qbf}{\mathbf{q}}
\newcommand{\qbfhat}{\widehat{\mathbf{q}}}
\newcommand{\rbf}{\mathbf{r}}
\newcommand{\rbfhat}{\widehat{\mathbf{r}}}
\newcommand{\sbf}{\mathbf{s}}
\newcommand{\sbfhat}{\widehat{\mathbf{s}}}
\newcommand{\ubf}{\mathbf{u}}
\newcommand{\ubfhat}{\widehat{\mathbf{u}}}
\newcommand{\utildebf}{\tilde{\mathbf{u}}}
\newcommand{\vbf}{\mathbf{v}}
\newcommand{\vbfhat}{\widehat{\mathbf{v}}}
\newcommand{\wbf}{\mathbf{w}}
\newcommand{\wbfhat}{\widehat{\mathbf{w}}}
\newcommand{\xbf}{\mathbf{x}}
\newcommand{\xbfhat}{\widehat{\mathbf{x}}}
\newcommand{\xbfbar}{\overline{\mathbf{x}}}
\newcommand{\ybf}{\mathbf{y}}
\newcommand{\zbf}{\mathbf{z}}
\newcommand{\zbfbar}{\overline{\mathbf{z}}}
\newcommand{\zbfhat}{\widehat{\mathbf{z}}}
\newcommand{\Ahat}{\widehat{A}}
\newcommand{\Abf}{\mathbf{A}}
\newcommand{\Bbf}{\mathbf{B}}
\newcommand{\Cbf}{\mathbf{C}}
\newcommand{\Bbfhat}{\widehat{\mathbf{B}}}
\newcommand{\Dbf}{\mathbf{D}}
\newcommand{\Ebf}{\mathbf{E}}
\newcommand{\Gbf}{\mathbf{G}}
\newcommand{\Hbf}{\mathbf{H}}
\newcommand{\Kbf}{\mathbf{K}}
\newcommand{\Pbf}{\mathbf{P}}
\newcommand{\Phat}{\widehat{P}}
\newcommand{\Qbf}{\mathbf{Q}}
\newcommand{\Rbf}{\mathbf{R}}
\newcommand{\Rhat}{\widehat{R}}
\newcommand{\Sbf}{\mathbf{S}}
\newcommand{\Ubf}{\mathbf{U}}
\newcommand{\Vbf}{\mathbf{V}}
\newcommand{\Wbf}{\mathbf{W}}
\newcommand{\Xhat}{\widehat{X}}
\newcommand{\Xbf}{\mathbf{X}}
\newcommand{\Ybf}{\mathbf{Y}}
\newcommand{\Zbf}{\mathbf{Z}}
\newcommand{\Zhat}{\widehat{Z}}
\newcommand{\Zbfhat}{\widehat{\mathbf{Z}}}
\def\alphabf{{\boldsymbol \alpha}}
\def\betabf{{\boldsymbol \beta}}
\def\mubf{{\boldsymbol \mu}}
\def\lambdabf{{\boldsymbol \lambda}}
\def\etabf{{\boldsymbol \eta}}
\def\xibf{{\boldsymbol \xi}}
\def\taubf{{\boldsymbol \tau}}
\def\sigmahat{{\widehat{\sigma}}}
\def\thetabf{{\bm{\theta}}}
\def\thetabfhat{{\widehat{\bm{\theta}}}}
\def\thetahat{{\widehat{\theta}}}
\def\mubar{\overline{\mu}}
\def\muavg{\mu}
\def\sigbf{\bm{\sigma}}
\def\etal{\emph{et al.}}
\def\Ggothic{\mathfrak{G}}
\def\Pset{{\mathcal P}}
\newcommand{\bigCond}[2]{\bigl({#1} \!\bigm\vert\! {#2} \bigr)}
\newcommand{\BigCond}[2]{\Bigl({#1} \!\Bigm\vert\! {#2} \Bigr)}
\def\Rect{\mathop{Rect}}
\def\sinc{\mathop{sinc}}
\def\NF{\mathrm{NF}}
\def\Real{\mathrm{Re}}
\def\Imag{\mathrm{Im}}
\newcommand{\tran}{^{\text{\sf T}}}
\newcommand{\herm}{^{\text{\sf H}}}
% Solution environment
\definecolor{lightgray}{gray}{0.95}
\newmdenv[linecolor=white,backgroundcolor=lightgray,frametitle=Solution:]{solution}
\begin{document}
\title{Problems: Coding and Capacity on Fading Channels\\
ECE-GY 6023. Wireless Communications}
\author{Prof.\ Sundeep Rangan}
\date{}
\maketitle
\begin{enumerate}
\item \emph{Slow vs.\ fast fading:}.
For each scenario below state whether the variations would likely be
slow or fast fading relative to the coding block.
Use reasonable assumptions and explain your reasoning. There is no single correct answer.
\begin{enumerate}[label=(\alph*)]
\item A 5G NR base stations transmits over a channel with a \SI{100}{ns} delay spread,
to a UE moving at $v=$ \SI{30}{m/s} with a $180^\circ$ angular spread.
The carrier frequency is $f_c=$ \SI{28}{GHz}.
The transmission is over a \SI{100}{MHz} bandwidth in \SI{125}{\micro\second} slots.
\item A UAV is connected to a ground base station via point-to-point link with a line-of-sight.
So, there is no multipath fading. But the UAV rotates 360$^\circ$ about once a second.
The beamwidth of the UAV
antenna element is 60$^\circ$ and packets are transmitted once every \SI{1}{ms}.
\end{enumerate}
\item \emph{Error rate on uncoded modulation}:
\begin{enumerate}[label=(\alph*)]
\item Use any reference to find the symbol error rate (SER) of 16-QAM as
a function of the SNR $\gamma_s = E_s/N_0$. Your expression will have a $Q$-function.
\item Find the SNR $\gamma_s$ requred for a SER of $(10)^{-3}$ assuming a constant channel.
You can use MATLAB to invert the $Q$-function.
\item Suppose that the channel is Rayleigh fading, so $\gamma_s$ is exponentially distributed.
Find the average SNR, $\Exp(\gamma_s)$ so that the average SER is $(10)^{-3}$.
\end{enumerate}
\item \emph{Slow fading and outage probability:} An access point is installed in an office
area with four rooms. The path loss from the access point to each room and the percentage of
users in each room are as follows:
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
% after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
Room & Path loss [dB] & Fraction users \\ \hline
1 & 60 & 0.6 \\ \hline
2 & 80 & 0.3 \\ \hline
3 & 90 & 0.06 \\ \hline
4 & 100 & 0.04 \\ \hline
\end{tabular}
\end{center}
The AP has a transmit power of \SI{15}{dBm} and bandwidth of \SI{18}{MHz}.
The thermal noise at the receivers, including noise figure is \SI{-165}{dBm/Hz}.
\begin{enumerate}[label=(\alph*)]
\item If there is no fading, what SNR can be guaranteed to at least 95\% of the users?
\item Now suppose that, at each location, there is Rayleigh fading that can be modeled as flat
over the transmissions.
Write an expression for the CDF of the SNR including variation in both location and fading.
\item What is the SNR that can be guaranteed to at least 95\% of the users if we need
to account for slow fading? You can use MATLAB to invert the expression in part (b).
\end{enumerate}
\item \emph{Ergodic capacity:} A channel has two paths. One path would be received
at power, $P_1$ and delay $\tau_1$, and the second path would be received at power
$P_2$ and delay $\tau_2$ where $\tau_2 > \tau_1$.
Suppose you signal over a bandwidth $W \gg 1/(\tau_2 - \tau_1)$ and noise power spectral density
is $N_0$.
\begin{enumerate}[label=(\alph*)]
\item What is the average SNR over the band?
\item What is the ergodic capacity over the band?
\item Evaluate the expressions in (a) and (b) with $P_1/(W N_0)=$ \SI{8}{dB}
and $P_2/(W N_0)=$ \SI{5}{dB}.
\end{enumerate}
\item \emph{LLRs:} For each of the following channels, find the log likelihood ratio (LLR):
\[
L(r) = \log \frac{ p(r|c=1) }{ p(r|c=0) }
\]
for the following channels:
\begin{enumerate}[label=(\alph*)]
\item Real-valued binary channel with fading:
\[
r= Ax + w, \quad w \sim {\mathcal N}(0,N_0/2), \quad
x = \begin{cases}
\sqrt{E_x/2} & \mbox{if } c = 1, \\
-\sqrt{E_x/2} & \mbox{if } c = 0.
\end{cases}
\]
The LLR $L$ should depend on $A$ and $N_0$.
\item Binary symmetric channel:
\[
r = c + w ~(\mbox{mod } 2), \quad w =
\begin{cases}
1 & \mbox{with probability } p \\
0 & \mbox{with probability } 1-p
\end{cases}
\]
Thus, $r \in \{0,1\}$ where there is a bit error with probability $p$.
\item Non-coherent channel:
\[
r = \begin{cases}
h + n & \mbox{when } c = 1\\
n & \mbox{when } c = 0,
\end{cases}
\quad h \sim {\mathcal CN}(0,E_s), ~n\sim {\mathcal CN}(0,N_0).
\]
\end{enumerate}
\item \emph{Bitwise likelihood}: Suppose that two bits $(c_0,c_1)$ are modulated to
a $4$-PAM constellation
(the real or imaginary component of a 16-QAM constellation):
\[
r = x + n, \quad n \sim {\mathcal N}(0,N_0/2),
\]
where the transmitted symbol
\[
x = \begin{cases}
-3A & \mbox{if } (c_0,c_1) = (00) \\
-A & \mbox{if } (c_0,c_1) = (01) \\
A & \mbox{if } (c_0,c_1) = (11) \\
3A & \mbox{if } (c_0,c_1) = (10)
\end{cases}
\]
Assume all the transmitted bits are equally likely.
\begin{enumerate}[label=(\alph*)]
\item Given a symbol energy, $E_s$, find $A$ such that $\Exp|x|^2 = E_s/2$.
\item Find the bitwise LLR for $c_0$:
\[
L_0(r) = \log \frac{p(r|c_0=1)}{p(r|c_0=1)}.
\]
Use total probability
\[
p(r|c_0) = \frac{1}{2}\left[ p(r|c_0,c_1=1) + p(r|c_0,c_1=0) \right].
\]
Find the bitwise LLR for $c_1$ as well.
\end{enumerate}
\item \emph{Row-column interleavers:} One simple way of doing interleaving is as follows.
The input is a sequence of bits of length $MN$ for some parameters $M$ and $N$.
We read the bits into an $M \times N$ array, one row at a time. Then, we read out
the bits one column at a time. If two bits are adjacent on the input what is the minimum separation on the output?
\end{enumerate}
\end{document}