-
Notifications
You must be signed in to change notification settings - Fork 0
/
config-defaults.yaml
79 lines (75 loc) · 1.59 KB
/
config-defaults.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
model_type:
desc: The backbone network of meta model, it can be ConvNet4, ConvNet6, ResNet12, ResNet18, ResNet34, WRN28
value: "ConvNet4"
dataset:
desc: The dataset can be CUB, MiniImageNet, TieredImageNet, CIFAR100
value: "CUB"
num_epochs:
desc: Number of epochs to train over
value: 2000
save_best:
desc: Save the best model
value: True
if_augmentation:
desc: Use augmentation methods
value: True
batch_size:
desc: Batch size
value: 1
sgd_lr:
desc: Learning rate of SGD
value: 0.1
patience:
desc: patience of optimizer scheduler
value: 50
reduce_factor:
desc: reduce rate of optimizer sechduler
value: 0.5
num_way:
desc: number of way
value: 5
num_shot:
desc: number of shot
value: 1
num_query:
desc: The number of query samples in a task
value: 15
num_train:
desc: The number of train tasks in an epoch
value: 100
num_val:
desc: The number of validation tasks
value: 600
num_test:
desc: The number of test tasks
value: 600
proxy_type:
desc: Proxy type can be Proxy, Mean, Sum
value: "Mean"
classifier:
desc: Classifier can be 3DConv, Euclidean, FC
value: "Euclidean"
gpu_id:
desc: gpu id
value: "0"
teacher_model:
desc: teacher model, Glove or FastText or Bert
value: "Bert"
random_embedding:
desc: embed the labels randomly
value: False
temperature:
desc: temperature used in attentnion transfer
value: 10
lam:
desc: lamda of text modality loss
value: 0.3
optimizer:
desc: SGD or Adam or AdamW
value: "Adam"
aux_loss:
desc: MSE or KL
value: "KL"
scale:
desc: Scale value in cross attention
value: 0.4