forked from akdess/CaSpER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
.Rhistory
512 lines (512 loc) · 24.7 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
}
indices <- which(gene.average < expr.cutoff)
if(length(indices) >0) {
object@data <- object.raw.data[-1 * indices, , drop=FALSE]
object.data <- object@data
object@annotation.filt <- object@annotation[-1 * indices, , drop=FALSE]
} else {
object@data <- object.raw.data
object.data <- object@data
object@annotation.filt <- object@annotation
}
if(is.null( object.data) || nrow( object.data) < 1 || ncol( object.data) < 1){ stop("Error, data has no rows or columns") }
if(matrix.type == "raw") {
cs <- colSums(object.data)
object.data <- sweep(object.data, STATS=cs, MARGIN=2, FUN="/")
normalize_factor <- median(cs)
object.data <- object.data * normalize_factor
object.data <- log2(object.data + 1)
#centered.data <- t(scale(t(object.data)))
}
centered.data <- t(apply(t(object.data), 2, function(y) (y - mean(y)) / sd(y) ^ as.logical(sd(y))))
object@centered.data <- AverageReference(data = centered.data, ref_ids = object@control.sample.ids)
lower_bound <- mean(apply(object@centered.data, 2,
function(x) quantile(x, na.rm=TRUE)[[1]]))
upper_bound <- mean(apply(object@centered.data, 2,
function(x) quantile(x, na.rm=TRUE)[[5]]))
threshold = mean(abs(c(lower_bound, upper_bound)))
object@centered.data[object@centered.data > threshold] <- threshold
object@centered.data[object@centered.data < (-1 * threshold)] <- -1 * threshold
# object <- ProcessData(object)
return(object)
}
object <- CreateCasperObject(raw.data=data,loh.name.mapping=loh.name.mapping,
sequencing.type="single-cell",
cnv.scale=3, loh.scale=3,expr.cutoff=0.1,matrix.type="normalized", filter="median",
annotation=annotation, method="iterative", loh=loh,
control.sample.ids="REF", cytoband=cytoband)
object <- ProcessData(object)
if (object@filter=="median") object <- PerformMedianFilterByChr(object)
if (object@filter=="mean") object <- PerformMeanFilterByChr(object)
object <- CenterSmooth(object)
object <- ControlNormalize(object)
CenterSmooth
ControlNormalize
#' @title CreateCasperObject
#'
#' @param raw.data the matrix of genes (rows) vs. cells (columns) containing the raw counts
#'
#' @param annotation data.frame containing positions of each gene along each chromosome in the genome
#'
#' @param control.sample.ids vector containing the reference (normal) cell (sample) names
#'
#' @param cytoband cytoband information downloaded from UCSC hg19: http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cytoBand.txt.gz hg38:http://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cytoBand.txt.gz
#'
#' @param loh.name.mapping contains the cell (sample) name and the matching baf signal sample name
#'
#' @param cnv.scale maximum expression scale
#'
#' @param loh.scale maximum baf scale
#'
#' @param method analysis type: itereative or fixed (default: iterative)
#'
#' @param loh The original baf signal
#'
#' @param sequencing.type sequencing.type sequencing type: bulk or single-cell
#'
#' @param expr.cutoff expression cutoff for lowly expressed genes
#'
#' @param log.transformed indicates if the data log2 transformed or not. (default:TRUE)
#'
#' @param window.length window length used for median filtering (default: 50)
#'
#' @param length.iterations increase in window length at each scale iteration (default: 50)
#'
#' @param vis.bound threshold for control normalized data for better visualization (default: 2)
#'
#' @param genomeVersion genomeVersion: hg19 or hg38 (default: hg19)
#'
#' @description Creation of a casper object.
#'
#' @return casper
#'
#' @export
#'
CreateCasperObject <- function(raw.data, annotation, control.sample.ids, cytoband, loh.name.mapping, cnv.scale, loh.scale,
method, loh, project = "casperProject", matrix.type="raw", sequencing.type, expr.cutoff = 0.1, log.transformed = TRUE,
window.length = 50, length.iterations = 50, genomeVersion = "hg19", filter= "median",
...) {
object <- new(Class = "casper", raw.data = raw.data, loh = loh, annotation = annotation, sequencing.type = sequencing.type,
control.sample.ids = control.sample.ids, project.name = project, cytoband = cytoband, loh.name.mapping = loh.name.mapping,
cnv.scale = cnv.scale, loh.scale = loh.scale, matrix.type = matrix.type, method = method, window.length = window.length, length.iterations = length.iterations,
genomeVersion = genomeVersion, filter = filter)
object.raw.data <- object@raw.data
if(matrix.type == "normalized") {
gene.average <- rowMeans(((2^object.raw.data) - 1))
}
if(matrix.type == "raw") {
gene.average <- rowMeans(object.raw.data)
}
indices <- which(gene.average < expr.cutoff)
if(length(indices) >0) {
object@data <- object.raw.data[-1 * indices, , drop=FALSE]
object.data <- object@data
object@annotation.filt <- object@annotation[-1 * indices, , drop=FALSE]
} else {
object@data <- object.raw.data
object.data <- object@data
object@annotation.filt <- object@annotation
}
if(is.null( object.data) || nrow( object.data) < 1 || ncol( object.data) < 1){ stop("Error, data has no rows or columns") }
if(matrix.type == "raw") {
cs <- colSums(object.data)
object.data <- sweep(object.data, STATS=cs, MARGIN=2, FUN="/")
normalize_factor <- median(cs)
object.data <- object.data * normalize_factor
object.data <- log2(object.data + 1)
#centered.data <- t(scale(t(object.data)))
}
centered.data <- t(apply(t(object.data), 2, function(y) (y - mean(y)) / sd(y) ^ as.logical(sd(y))))
object@centered.data <- AverageReference(data = centered.data, ref_ids = object@control.sample.ids)
lower_bound <- mean(apply(object@centered.data, 2,
function(x) quantile(x, na.rm=TRUE)[[1]]))
upper_bound <- mean(apply(object@centered.data, 2,
function(x) quantile(x, na.rm=TRUE)[[5]]))
threshold = mean(abs(c(lower_bound, upper_bound)))
object@centered.data[object@centered.data > threshold] <- threshold
object@centered.data[object@centered.data < (-1 * threshold)] <- -1 * threshold
object <- ProcessData(object)
return(object)
}
#' @title ProcessData()
#'
#' @description Processing expression signal. Step 1. Recursively iterative median filtering Step 2. Center Normalization Step 3. Control Normalization
#'
#' @param object casper object
#'
#' @return object
#'
#' @export
#'
#'
ProcessData <- function(object) {
if (object@filter=="median") object <- PerformMedianFilterByChr(object)
if (object@filter=="mean") object <- PerformMeanFilterByChr(object)
object <- CenterSmooth(object)
#object <- ControlNormalize(object)
return(object)
}
object <- CreateCasperObject(raw.data=data,loh.name.mapping=loh.name.mapping,
sequencing.type="single-cell",
cnv.scale=3, loh.scale=3,expr.cutoff=0.1,matrix.type="normalized", filter="median",
annotation=annotation, method="iterative", loh=loh,
control.sample.ids="REF", cytoband=cytoband)
object <- ControlNormalize(object)
ProcessData <- function(object) {
if (object@filter=="median") object <- PerformMedianFilterByChr(object)
if (object@filter=="mean") object <- PerformMeanFilterByChr(object)
object <- CenterSmooth(object)
object <- ControlNormalize(object)
return(object)
}
object <- CreateCasperObject(raw.data=data,loh.name.mapping=loh.name.mapping,
sequencing.type="single-cell",
cnv.scale=3, loh.scale=3,expr.cutoff=0.1,matrix.type="normalized", filter="median",
annotation=annotation, method="iterative", loh=loh,
control.sample.ids="REF", cytoband=cytoband)
## plot median filtered gene expression matrix
plotHeatmap(object, fileName="heatmap.png", cnv.scale= 3, cluster_cols = F, cluster_rows = T, show_rownames = T, only_soi = T)
object <- CreateCasperObject(raw.data=data,loh.name.mapping=loh.name.mapping,
sequencing.type="single-cell",
cnv.scale=3, loh.scale=3,expr.cutoff=0.1,matrix.type="normalized", filter="mean",
annotation=annotation, method="iterative", loh=loh,
control.sample.ids="REF", cytoband=cytoband)
## plot median filtered gene expression matrix
plotHeatmap(object, fileName="heatmapMean.png", cnv.scale= 3, cluster_cols = F, cluster_rows = T, show_rownames = T, only_soi = T)
plotHeatmap
plotHeatmapobject <- CreateCasperObject(raw.data=data,loh.name.mapping=loh.name.mapping,
sequencing.type="single-cell",
cnv.scale=3, loh.scale=3,expr.cutoff=0.1,matrix.type="normalized", filter="median",
annotation=annotation, method="iterative", loh=loh,
control.sample.ids="REF", cytoband=cytoband)
object <- CreateCasperObject(raw.data=data,loh.name.mapping=loh.name.mapping,
sequencing.type="single-cell",
cnv.scale=3, loh.scale=3,expr.cutoff=0.1,matrix.type="normalized", filter="median",
annotation=annotation, method="iterative", loh=loh,
control.sample.ids="REF", cytoband=cytoband)
## plot median filtered gene expression matrix
plotHeatmap(object, fileName="heatmapMean.png", cnv.scale= 3, cluster_cols = F, cluster_rows = T, show_rownames = T, only_soi = T)
library(Seurat)
library(CaSpER)
data("hg19_cytoband")
# expression data is downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110499
counts <- read.delim("GSE110499_GEO_processed_MM_10X_raw_UMI_count_martix.txt", stringsAsFactor=F, header=T)
rownames(counts) <- counts[, 1]
counts <- counts[, -1]
mm135 <- CreateSeuratObject(counts = counts, project = "mm135", min.cells = 3, min.features = 200)
mm135[["percent.mt"]] <- PercentageFeatureSet(mm135, pattern = "^MT-")
mm135 <- subset(mm135, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)
mm135 <- NormalizeData(mm135 , scale.factor = 1e6, normalization.method = "RC")
mm135 <- FindVariableFeatures(mm135, do.plot = T, nfeatures = 1000)
mm135 <- ScaleData(mm135)
mm135 <- RunPCA(mm135, features = VariableFeatures(object = mm135),npcs = 100)
mm135 <- RunTSNE(mm135, dims.use = 1:10)
DimPlot(pbmc, reduction = "tsne")
FeaturePlot(pbmc, features = c("SDC1", "CD38"))
mm135 <- FindNeighbors(mm135, dims = 1:10)
mm135 <- FindClusters(mm135, resolution = 0.5)
DimPlot(pbmc, reduction = "tsne", label=T)
log.ge <- as.matrix(mm135@assays$RNA@data)
control <- names(Idents(mm135) )[Idents(mm135) %in% c(2,7)]
mm <- names(Idents(mm135) )[Idents(mm135) %in% c(0, 1, 3, 4)]
genes <- rownames(log.ge)
annotation <- generateAnnotation(id_type="hgnc_symbol", genes=genes, centromere=centromere, ishg19 = T)
log.ge <- log.ge[match( annotation$Gene,rownames(log.ge)) , ]
rownames(log.ge) <- annotation$Gene
log.ge <- log2(log.ge +1)
load("maf.rda") ## from https://github.com/akdess/CaSpER/blob/master/data/maf.rda
loh<- list()
loh[[1]] <- maf
names(loh) <- "MM135"
loh.name.mapping <- data.frame (loh.name= "MM135" , sample.name=colnames(log.ge))
object <- CreateCasperObject(raw.data=log.ge,loh.name.mapping=loh.name.mapping, sequencing.type="single-cell",
cnv.scale=3, loh.scale=3,
expr.cutoff=0.1, filter="median", matrix.type="normalized",
annotation=annotation, method="iterative", loh=loh,
control.sample.ids=control, cytoband=cytoband)
counts <- read.delim("GSE110499_GEO_processed_MM_10X_raw_UMI_count_matrix.txt", stringsAsFactor=F, header=T)
rownames(counts) <- counts[, 1]
counts <- counts[, -1]
mm135 <- CreateSeuratObject(counts = counts, project = "mm135", min.cells = 3, min.features = 200)
mm135[["percent.mt"]] <- PercentageFeatureSet(mm135, pattern = "^MT-")
mm135 <- subset(mm135, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)
mm135 <- NormalizeData(mm135 , scale.factor = 1e6, normalization.method = "RC")
mm135 <- FindVariableFeatures(mm135, do.plot = T, nfeatures = 1000)
mm135 <- ScaleData(mm135)
mm135 <- RunPCA(mm135, features = VariableFeatures(object = mm135),npcs = 100)
mm135 <- RunTSNE(mm135, dims.use = 1:10)
DimPlot(pbmc, reduction = "tsne")
FeaturePlot(pbmc, features = c("SDC1", "CD38"))
mm135 <- FindNeighbors(mm135, dims = 1:10)
mm135 <- FindClusters(mm135, resolution = 0.5)
DimPlot(pbmc, reduction = "tsne", label=T)
log.ge <- as.matrix(mm135@assays$RNA@data)
control <- names(Idents(mm135) )[Idents(mm135) %in% c(2,7)]
mm <- names(Idents(mm135) )[Idents(mm135) %in% c(0, 1, 3, 4)]
genes <- rownames(log.ge)
annotation <- generateAnnotation(id_type="hgnc_symbol", genes=genes, centromere=centromere, ishg19 = T)
log.ge <- log.ge[match( annotation$Gene,rownames(log.ge)) , ]
rownames(log.ge) <- annotation$Gene
log.ge <- log2(log.ge +1)
library(Seurat)
library(CaSpER)
data("hg19_cytoband")
# expression data is downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110499
counts <- read.delim("GSE110499_GEO_processed_MM_10X_raw_UMI_count_matrix.txt", stringsAsFactor=F, header=T)
rownames(counts) <- counts[, 1]
counts <- counts[, -1]
mm135 <- CreateSeuratObject(counts = counts, project = "mm135", min.cells = 3, min.features = 200)
mm135[["percent.mt"]] <- PercentageFeatureSet(mm135, pattern = "^MT-")
mm135 <- subset(mm135, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)
mm135 <- NormalizeData(mm135 , scale.factor = 1e6, normalization.method = "RC")
mm135 <- FindVariableFeatures(mm135, do.plot = T, nfeatures = 1000)
mm135 <- ScaleData(mm135)
mm135 <- RunPCA(mm135, features = VariableFeatures(object = mm135),npcs = 100)
mm135 <- RunTSNE(mm135, dims.use = 1:10)
DimPlot(pbmc, reduction = "tsne")
FeaturePlot(pbmc, features = c("SDC1", "CD38"))
mm135 <- FindNeighbors(mm135, dims = 1:10)
mm135 <- FindClusters(mm135, resolution = 0.5)
DimPlot(pbmc, reduction = "tsne", label=T)
log.ge <- as.matrix(mm135@assays$RNA@data)
control <- names(Idents(mm135) )[Idents(mm135) %in% c(2,7)]
mm <- names(Idents(mm135) )[Idents(mm135) %in% c(0, 1, 3, 4)]
Sys.getenv("PATH")
require(devtools)
install_github("akdess/CaSpER")
require(devtools)
install_github("akdess/CaSpER")
require(devtools)
install_github("akdess/CaSpER", force=T)
require(devtools)
install_github("akdess/CaSpER", force=T)
?install_github
require(devtools)
install_github("akdess/CaSpER", force=TRUE
)
require(devtools)
install_github("akdess/CaSpER")
require(devtools)
install_github("akdess/CaSpER")
library(CaSpER)
library(CaSpER)
## "yale_meningioma.rda" contains the following objects:
## data: normalized gene expression matrix
## loh.name.mapping: data.frame for mapping loh files to expression files
## annotation
## control.sample.ids: samples that are used as normal
## samps: sample information
## genoMat: genotyping large scale CNV event summary 1: amplification, -1:deletion, 0: neutral
data("yale_meningioma")
## "hg19_cytoband.rda" contains the following objects:
## cytoband: hg19 cytoband information
## centromere: hg19 centromere information
data("hg19_cytoband")
data <- yale_meningioma$data
loh <- yale_meningioma$loh
loh.name.mapping <- yale_meningioma$loh.name.mapping
control.sample.ids <- yale_meningioma$control.sample.ids
genoMat <- yale_meningioma$genoMat
samps <- yale_meningioma$samps
## generate annotation data.frame
#curl -s "http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz" | gunzip -c | grep acen | head
annotation <- generateAnnotation(id_type="ensembl_gene_id", genes=rownames(data), ishg19=T, centromere,host="uswest.ensembl.org")
data <- data[match( annotation$Gene,rownames(data)), ]
bject <- CreateCasperObject(raw.data=data,loh.name.mapping=loh.name.mapping, sequencing.type="bulk",
cnv.scale=3, loh.scale=3, matrix.type="normalized", expr.cutoff=4.5,
annotation=annotation, method="iterative", loh=loh, filter="median",
control.sample.ids=control.sample.ids, cytoband=cytoband)
## runCaSpER
final.objects <- runCaSpER(object, removeCentromere=T, cytoband=cytoband, method="iterative")
object <- CreateCasperObject(raw.data=data,loh.name.mapping=loh.name.mapping, sequencing.type="bulk",
cnv.scale=3, loh.scale=3, matrix.type="normalized", expr.cutoff=4.5,
annotation=annotation, method="iterative", loh=loh, filter="median",
control.sample.ids=control.sample.ids, cytoband=cytoband)
## runCaSpER
final.objects <- runCaSpER(object, removeCentromere=T, cytoband=cytoband, method="iterative")
order.sampleNames <- c("MN-1171", "MN-60835" ,"MN-1236" , "MN-1237" , "MN-1137" , "MN-1161" , "MN-60" , "MN-5" )
## plot median filtered gene expression matrix
obj <- final.objects[[9]]
plotHeatmap(object=obj, fileName="heatmap.png",cnv.scale= 3, cluster_cols = F, cluster_rows = T, show_rownames = T, only_soi = T)
plotHeatmap
## large scale event summary
finalChrMat <- extractLargeScaleEvents (final.objects, thr=0.75)
common <- intersect(order.sampleNames, intersect(rownames(finalChrMat), rownames(genoMat)))
finalChrMat <- finalChrMat[match(common, rownames(finalChrMat)), ]
genoMat <- genoMat[match(common, rownames(genoMat)), ]
## calculate TPR and FPR using genotyping array as gold standard
calcROC(chrMat=finalChrMat, chrMat2=genoMat)
library(CaSpER)
require(Matrix)
library(Seurat)
setwd("Z:\\SBMI_Houston\\Akdes Serin\\mtx\\")
filtered.counts <- Read10X("Z:\\SBMI_Houston\\Akdes Serin\\mtx\\Post_analysis\\filtered_feature_bc_matrix")
postal <- CreateSeuratObject(counts = filtered.counts, min.cells = 3, min.features = 200)
postal[["percent.mt"]] <- PercentageFeatureSet(postal, pattern = "^MT-")
postal <- subset(postal, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)
# standard log-normalization
postal <- NormalizeData(postal, scale.factor = 1e6, normalization.method = "RC")
#postal <- NormalizeData(postal, method="LogNormalize")
# choose ~1k variable features
postal <- FindVariableFeatures(postal)
library(CaSpER)
require(Matrix)
library(Seurat)
setwd("Z:\\SBMI_Houston\\Akdes Serin\\mtx\\")
filtered.counts <- Read10X("Z:\\SBMI_Houston\\Akdes Serin\\mtx\\Post_analysis\\filtered_feature_bc_matrix")
postal <- CreateSeuratObject(counts = filtered.counts, min.cells = 3, min.features = 200)
postal[["percent.mt"]] <- PercentageFeatureSet(postal, pattern = "^MT-")
postal <- subset(postal, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)
# standard log-normalization
postal <- NormalizeData(postal, scale.factor = 1e6, normalization.method = "RC")
#postal <- NormalizeData(postal, method="LogNormalize")
# choose ~1k variable features
postal <- FindVariableFeatures(postal)
# standard scaling (no regression)
postal <- ScaleData(postal)
postal <- RunPCA(postal, npcs = 30, verbose = FALSE)
# t-SNE and Clustering
postal <- RunTSNE(postal, dims = 1:25, method = "FIt-SNE")
postal <- RunUMAP(postal, dims = 1:25, reduction = "pca")
postal <- FindNeighbors(postal, reduction = "pca", dims = 1:20)
postal <- FindClusters(postal, resolution = 0.5)
p2 <- DimPlot(postal, label = TRUE)
p2
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/cytoBand.txt.gz
data <- as.matrix(postal@assays$RNA@counts)
#data <- log2(data+1)
FeaturePlot(postal, features = "PTPRC", min.cutoff = "q9")
p2
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/cytoBand.txt.gz
control <- names(Idents(postal) )[Idents(postal) %in% 4]
data <- as.matrix(postal@assays$RNA@counts)
#
annotation <- generateAnnotation(id_type="hgnc_symbol", genes=rownames(data), ishg19=F,
centromere=centromere, host="uswest.ensembl.org")
data <- data[match( annotation$Gene,rownames(data)), ]
# create CaSpER object
cytoband <- read.delim("Z:\\SBMI_Houston\\Akdes Serin\\mtx\\cytoBand.txt", header=F)
cytoband_v2 <- data.frame(V1=gsub("chr", "", cytoband[,1]), V2=cytoband[,2], V3=cytoband[,3], V4="p", stringsAsFactors=F)
cytoband_v2$V4 [grep("q", cytoband$V4)] <- "q"
cytoband_v2 <- cytoband_v2[cytoband_v2$V1 %in% c(1:22, "X", "Y"), ]
cytoband <- cytoband_v2
cytoband <- cytoband[cytoband$V1 %in% c(1:22), ]
cytoband_v2 <- cytoband[,1:4]
cytoband_v2$V4 <-substring(cytoband$V4, 1, 1)
start <- do.call(rbind, lapply(split(cytoband_v2$V2, paste0(cytoband_v2$V1, cytoband_v2$V4)), min))
end <- do.call(rbind, lapply(split(cytoband_v2$V3, paste0(cytoband_v2$V1, cytoband_v2$V4)), max))
cytoband <- data.frame(V1=gsub("p", "", gsub("q", "", rownames(start))), V2=start, V3=end, V4=rownames(start), stringsAsFactors=F)
cytoband$V4[grep("q", cytoband$V4)] <- "q"
cytoband$V4[grep("p", cytoband$V4)] <- "p"
cytoband <- cytoband [ as.vector(sapply(c(1:22, "X"), function(x) which(cytoband$V1 %in% x))), ]
rownames(cytoband) <- NULL
cytoband
cytoband <- cytoband [ as.vector(sapply(c(1:22), function(x) which(cytoband$V1 %in% x))), ]
rownames(cytoband) <- NULL
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/cytoBand.txt.gz
clusters <- postal@meta.data$seurat_clusters
#controls <- rownames(postal@meta.data)[postal@meta.data$seurat_clusters %in% c(6,2)]
controls <- rownames(postal@meta.data)[postal@meta.data$seurat_clusters %in% c(4)]
object <- CreateCasperObject(raw.data=data,loh.name.mapping=NULL,
sequencing.type="single-cell",
cnv.scale=3, loh.scale=3, window.length=50, length.iterations=50,
expr.cutoff = 0.1, filter="mean", matrix.type="raw",
annotation=annotation, method="iterative", loh=NULL,
control.sample.ids=controls, cytoband=cytoband)
final.objects <- list()
loh.list <- list()
cnv.list <- list()
message("Performing HMM segmentation...")
for (i in 1:object@cnv.scale) {
print(i)
cnv.list[[i]] <- PerformSegmentationWithHMM(object, cnv.scale = i, removeCentromere = T, cytoband = cytoband)
}
combin <- expand.grid(1:object@cnv.scale, 1:object@loh.scale)
list.names <- apply(combin, 1, function(x) paste(x[1], x[2], sep = "_vs_"))
combin <- expand.grid(1:object@cnv.scale, 1:object@loh.scale)
list.names <- apply(combin, 1, function(x) paste(x[1], x[2], sep = "_vs_"))
for (i in 1:3) {
object <- cnv.list[[i]]
object@segments$states2 <- rep("neut", length(object@segments$state))
object@segments$states2[as.numeric(as.character(object@segments$state)) %in% c(1)] <- "del"
object@segments$states2[as.numeric(as.character(object@segments$state)) %in% c(5)] <- "amp"
final.objects[[i]] <- generateLargeScaleEvents(object)
}
finalChrMat <- extractLargeScaleEvents (final.objects, thr=0.75)
annotation_row = data.frame(ID=rep("",length(rownames(postal@meta.data)) ), stringsAsFactors=F)
rownames(annotation_row) = rownames(postal@meta.data)
annotation_row[postal@meta.data$seurat_clusters %in% c(4),] <- "control"
k<- pheatmap(finalChrMat[,],annotation_row=annotation_row, color = colorRampPalette(rev(brewer.pal(n = 7, name =
"RdBu")))(100), show_rownames=F)
require(Matrix)
library(Seurat)
setwd("Z:\\SBMI_Houston\\Akdes Serin\\mtx\\")
filtered.counts <- Read10X("Z:\\SBMI_Houston\\Akdes Serin\\mtx\\Front_analysis\\filtered_feature_bc_matrix")
frontal <- CreateSeuratObject(counts = filtered.counts, min.cells = 3, min.features = 200)
frontal[["percent.mt"]] <- PercentageFeatureSet(frontal, pattern = "^MT-")
frontal <- subset(frontal, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)
# standard log-normalization
frontal <- NormalizeData(frontal, normalization.method = "LogNormalize", scale.factor = 10000)
# choose ~1k variable features
frontal <- FindVariableFeatures(frontal)
# standard scaling (no regression)
frontal <- ScaleData(frontal)
frontal <- RenameCells(object = frontal, add.cell.id = "frontal_")
#VlnPlot(frontal, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
filtered.counts <- Read10X("Z:\\SBMI_Houston\\Akdes Serin\\mtx\\Post_analysis\\filtered_feature_bc_matrix")
postal <- CreateSeuratObject(counts = filtered.counts, min.cells = 3, min.features = 200)
postal[["percent.mt"]] <- PercentageFeatureSet(postal, pattern = "^MT-")
postal <- subset(postal, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)
# standard log-normalization
postal <- NormalizeData(postal, normalization.method = "LogNormalize", scale.factor = 10000)
# choose ~1k variable features
postal <- FindVariableFeatures(postal)
# standard scaling (no regression)
postal <- ScaleData(postal)
postal <- RenameCells(object = postal, add.cell.id = "postal_")
meningioma <- list (postal=postal, frontal=frontal)
anchors <- FindIntegrationAnchors(object.list = meningioma, dims = 1:20)
combined <- IntegrateData(anchorset = anchors, dims = 1:20)
DefaultAssay(combined) <- "integrated"
# Run the standard workflow for visualization and clustering
combined <- ScaleData(combined, verbose = FALSE)
combined <- RunPCA(combined, npcs = 30, verbose = FALSE)
# t-SNE and Clustering
combined <- RunTSNE(combined, dims = 1:25, method = "FIt-SNE")
combined <- RunUMAP(combined, dims = 1:25, reduction = "pca")
combined <- FindNeighbors(combined, reduction = "pca", dims = 1:20)
combined <- FindClusters(combined, resolution = 0.5)
VlnPlot(combined, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
p2 <- DimPlot(combined, label = TRUE)
region <- rep("", length(rownames(combined@meta.data)))
names(region) <- rownames(combined@meta.data)
region[grep("postal", names(region)) ] <- "postal"
region[grep("frontal", names(region)) ] <- "frontal"
combined@meta.data$region <- region
#saveRDS(combined, file="combinedForOldR.rds")
#saveRDS(combined, file="combined.rds")
p1 <- DimPlot(combined)
plot_grid(p1, p2)
DimPlot(combined, split.by = "region", label=T)
FeaturePlot(combined, features = "PTPRC", min.cutoff = "q9")
library(CaSpER)
data("hg38_cytoband.rda")
data("hg38_cytoband")
cytoband
cytoband2 <- read.delim("Z:\\SBMI_Houston\\Akdes Serin\\mtx\\cytoBand.txt", header=F)
centromere <- cytoband2[cytoband2$V5=="acen", ]
centromere
rownames(centromere) <- NULL
centromere
save(list=c("cytoband", "centromere
"), file="hg38_cytoband.rda")
save(list=c("cytoband", "centromere
"), file="hg38_cytoband.rda")
save(list=c("cytoband", "centromere"), file="hg38_cytoband.rda")
install_github("akdess/CaSpER")
require(devtools)
install_github("akdess/CaSpER")
require(devtools)
install_github("akdess/CaSpER", force=T)
require(devtools)
install_github("akdess/CaSpER", force=T)