-
Notifications
You must be signed in to change notification settings - Fork 4
/
test_JetTPredict.txt
84 lines (84 loc) · 3.39 KB
/
test_JetTPredict.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Testing JetTransformerPredictor
======================================================================
Options
----------------------------------------------------------------------
activation : gelu
attn_drop_rate : 0.0
batch_size : 4096
checkpoint_freq : 10
drop_path_rate : 0.0
dropout : 0.0
ema : [0.996, 0.999]
emb_dim : 512
embedding_skip_connections : True
event_info_file :
init_std : 0.02
initial_embedding_dim : 256
initial_embedding_skip_connections: False
learning_rate : 0.001
linear_block_type : basic
min_lr : 1e-06
mlp_ratio : 4.0
normalization : LayerNorm
num_context_subjets : 10
num_embedding_layers : 10
num_epochs : 100
num_heads : 8
num_jets : 100000
num_layers : 6
num_part_ftr : 4
num_particles : 30
num_subjets : 20
num_workers : 4
optimizer : AdamW
pred_depth : 3
qk_scale : None
qkv_bias : True
repr_dim : 1024
scheduler : cosine
skip_connections : True
start_epochs : 0
testing_file :
training_file :
use_amp : True
validation_file :
warmup_epochs : 10
warmup_start_lr : 1e-08
weight_decay : 0.01
======================================================================
Initializing JetsTransformerPredictor module
Initializing Block module
Initializing Attention module
Initializing MLP module
Initializing Block module
Initializing Attention module
Initializing MLP module
Initializing Block module
Initializing Attention module
Initializing MLP module
JetsTransformerPredictor forward pass with input shape: torch.Size([100, 8, 1024])
torch.Size([100, 8, 512])
torch.Size([100, 2, 512])
Block forward pass with input shape: torch.Size([200, 9, 1024])
Attention forward pass with input shape: torch.Size([200, 9, 1024])
num_heads: 8
Attention output shape: torch.Size([200, 9, 1024])
MLP forward pass with input shape: torch.Size([200, 9, 1024])
MLP output shape: torch.Size([200, 9, 1024])
Block output shape: torch.Size([200, 9, 1024])
Block forward pass with input shape: torch.Size([200, 9, 1024])
Attention forward pass with input shape: torch.Size([200, 9, 1024])
num_heads: 8
Attention output shape: torch.Size([200, 9, 1024])
MLP forward pass with input shape: torch.Size([200, 9, 1024])
MLP output shape: torch.Size([200, 9, 1024])
Block output shape: torch.Size([200, 9, 1024])
Block forward pass with input shape: torch.Size([200, 9, 1024])
Attention forward pass with input shape: torch.Size([200, 9, 1024])
num_heads: 8
Attention output shape: torch.Size([200, 9, 1024])
MLP forward pass with input shape: torch.Size([200, 9, 1024])
MLP output shape: torch.Size([200, 9, 1024])
Block output shape: torch.Size([200, 9, 1024])
JetsTransformerPredictor output shape: torch.Size([200, 1, 1024])
torch.Size([100, 2, 1024])