-
-
Notifications
You must be signed in to change notification settings - Fork 134
/
rtree.h
1251 lines (1036 loc) · 34.3 KB
/
rtree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// TITLE
//
// R-TREES: A DYNAMIC INDEX STRUCTURE FOR SPATIAL SEARCHING
//
// DESCRIPTION
//
// A C++ templated version of the RTree algorithm.
// For more information please read the comments in RTree.h
//
// AUTHORS
//
// * 1983 Original algorithm and test code by Antonin Guttman
// and Michael Stonebraker, UC Berkely
// * 1994 ANSI C ported from original test code by Melinda Green
// (melinda@superliminal.com)
// * 1995 Sphere volume fix for degeneracy problem submitted by Paul Brook
// * 2004 Templated C++ port by Greg Douglas
// * 2018 Iterator fix and Qt macros by Martin Tuma
//
// LICENSE:
//
// Entirely free for all uses. Enjoy!
#ifndef RTREE_H
#define RTREE_H
#include <cmath>
#include <cstdlib>
#include <QtGlobal>
#define RTREE_TEMPLATE template<class DATATYPE, class ELEMTYPE, int NUMDIMS, \
class ELEMTYPEREAL, int TMAXNODES, int TMINNODES>
#define RTREE_QUAL RTree<DATATYPE, ELEMTYPE, NUMDIMS, ELEMTYPEREAL, TMAXNODES, \
TMINNODES>
// This version does not contain a fixed memory allocator, fill in lines with
// EXAMPLE to implement one.
#define RTREE_DONT_USE_MEMPOOLS
// Better split classification, may be slower on some systems
#define RTREE_USE_SPHERICAL_VOLUME
/// \class RTree
///
/// Implementation of RTree, a multidimensional bounding rectangle tree.
/// Example usage: For a 3-dimensional tree use RTree<Object*, float, 3> myTree;
///
/// This modified, templated C++ version by Greg Douglas at Auran
/// (http://www.auran.com)
///
/// \c DATATYPE Referenced data, should be int, void*, obj* etc. no larger than
/// sizeof<void*> and simple type
/// \c ELEMTYPE Type of element such as int or float
/// \c NUMDIMS Number of dimensions such as 2 or 3
/// \c ELEMTYPEREAL Type of element that allows fractional and large values such
/// as float or double, for use in volume calcs
///
/// NOTES: Inserting and removing data requires the knowledge of its constant
/// Minimal Bounding Rectangle. This version uses new/delete for nodes,
/// I recommend using a fixed size allocator for efficiency. Instead of using
/// a callback function for returned results, I recommend and efficient
/// pre-sized, grow-only memory array similar to MFC CArray or STL Vector for
/// returning search query result.
///
template<class DATATYPE, class ELEMTYPE, int NUMDIMS,
class ELEMTYPEREAL = ELEMTYPE, int TMAXNODES = 8, int TMINNODES = TMAXNODES / 2>
class RTree
{
protected:
struct Node; // Fwd decl. Used by other internal structs and iterator
public:
enum
{
MAXNODES = TMAXNODES, ///< Max elements in node
MINNODES = TMINNODES, ///< Min elements in node
};
public:
RTree();
RTree(const RTree &) = delete;
virtual ~RTree();
/// Insert entry
/// \param a_min Min of bounding rect
/// \param a_max Max of bounding rect
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers
/// not allowed.
void Insert(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS],
const DATATYPE& a_dataId);
/// Remove entry
/// \param a_min Min of bounding rect
/// \param a_max Max of bounding rect
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers
/// not allowed.
void Remove(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS],
const DATATYPE& a_dataId);
/// Find all within search rectangle
/// \param a_min Min of search bounding rect
/// \param a_max Max of search bounding rect
/// \param a_resultCallback Callback function to return result. Callback
/// should return 'true' to continue searching
/// \param a_context User context to pass as parameter to a_resultCallback
/// \return Returns the number of entries found
int Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS],
bool a_resultCallback(DATATYPE a_data, void* a_context),
void* a_context) const;
/// Remove all entries from tree
void RemoveAll();
/// Count the data elements in this container. This is slow as no internal
/// counter is maintained.
int Count();
/// Iterator is not remove safe.
class Iterator
{
private:
// Max stack size. Allows almost n^32 where n is number of branches in
// node
enum { MAX_STACK = 32 };
struct StackElement
{
Node* m_node;
int m_branchIndex;
};
public:
Iterator() { Init(); }
~Iterator() { }
/// Is iterator invalid
bool IsNull() { return (m_tos <= 0); }
/// Is iterator pointing to valid data
bool IsNotNull() { return (m_tos > 0); }
/// Access the current data element.
DATATYPE& operator*()
{
Q_ASSERT(IsNotNull());
StackElement& curTos = m_stack[m_tos - 1];
return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
}
/// Access the current data element.
const DATATYPE& operator*() const
{
Q_ASSERT(IsNotNull());
StackElement& curTos = m_stack[m_tos - 1];
return curTos.m_node->m_branch[curTos.m_branchIndex].m_data;
}
/// Find the next data element
bool operator++() { return FindNextData(); }
/// Get the bounds for this node
void GetBounds(ELEMTYPE a_min[NUMDIMS], ELEMTYPE a_max[NUMDIMS])
{
Q_ASSERT(IsNotNull());
StackElement& curTos = m_stack[m_tos - 1];
Branch& curBranch = curTos.m_node->m_branch[curTos.m_branchIndex];
for (int index = 0; index < NUMDIMS; ++index) {
a_min[index] = curBranch.m_rect.m_min[index];
a_max[index] = curBranch.m_rect.m_max[index];
}
}
private:
// Reset iterator
void Init() { m_tos = 0; }
// Find the next data element in the tree (For internal use only)
bool FindNextData()
{
for (;;) {
if (m_tos <= 0)
return false;
// Copy stack top cause it may change as we use it
StackElement curTos = Pop();
if (curTos.m_node->IsLeaf()) {
// Keep walking through data while we can
if (curTos.m_branchIndex+1 < curTos.m_node->m_count) {
// There is more data, just point to the next one
Push(curTos.m_node, curTos.m_branchIndex + 1);
return true;
}
// No more data, so it will fall back to previous level
} else {
if (curTos.m_branchIndex+1 < curTos.m_node->m_count) {
// Push sibling on for future tree walk
// This is the 'fall back' node when we finish with
// the current level
Push(curTos.m_node, curTos.m_branchIndex + 1);
}
// Since cur node is not a leaf, push first of next level to
// get deeper into the tree
Node* nextLevelnode = curTos.m_node->m_branch[curTos.m_branchIndex].m_child;
Push(nextLevelnode, 0);
// If we pushed on a new leaf, exit as the data is ready at
// TOS
if (nextLevelnode->IsLeaf())
return true;
}
}
}
// Push node and branch onto iteration stack
void Push(Node* a_node, int a_branchIndex)
{
m_stack[m_tos].m_node = a_node;
m_stack[m_tos].m_branchIndex = a_branchIndex;
++m_tos;
Q_ASSERT(m_tos <= MAX_STACK);
}
// Pop element off iteration stack
StackElement& Pop()
{
Q_ASSERT(m_tos > 0);
--m_tos;
return m_stack[m_tos];
}
// Stack as we are doing iteration instead of recursion
StackElement m_stack[MAX_STACK];
// Top Of Stack index
int m_tos;
friend class RTree;
};
// Get 'first' for iteration
void GetFirst(Iterator& a_it)
{
a_it.Init();
Node* first = m_root;
while (first) {
if (first->IsInternalNode() && first->m_count > 1) {
a_it.Push(first, 1); // Descend sibling branch later
} else if(first->IsLeaf()) {
if(first->m_count) {
a_it.Push(first, 0);
}
break;
}
first = first->m_branch[0].m_child;
}
}
// Get Next for iteration
void GetNext(Iterator& a_it) { ++a_it; }
// Is iterator NULL, or at end?
bool IsNull(Iterator& a_it) { return a_it.IsNull(); }
// Get object at iterator position
DATATYPE& GetAt(Iterator& a_it) { return *a_it; }
protected:
// Minimal bounding rectangle (n-dimensional)
struct Rect
{
ELEMTYPE m_min[NUMDIMS]; ///< Min dimensions of bounding box
ELEMTYPE m_max[NUMDIMS]; ///< Max dimensions of bounding box
};
/// May be data or may be another subtree
/// The parents level determines this.
/// If the parents level is 0, then this is data
struct Branch
{
Rect m_rect; ///< Bounds
union
{
Node* m_child; ///< Child node
DATATYPE m_data; ///< Data Id or Ptr
};
};
/// Node for each branch level
struct Node
{
// Not a leaf, but a internal node
bool IsInternalNode() { return (m_level > 0); }
// A leaf, contains data
bool IsLeaf() { return (m_level == 0); }
int m_count; ///< Count
int m_level; ///< Leaf is zero, others positive
Branch m_branch[MAXNODES]; ///< Branch
};
/// A link list of nodes for reinsertion after a delete operation
struct ListNode
{
ListNode* m_next; ///< Next in list
Node* m_node; ///< Node
};
/// Variables for finding a split partition
struct PartitionVars
{
int m_partition[MAXNODES+1];
int m_total;
int m_minFill;
int m_taken[MAXNODES+1];
int m_count[2];
Rect m_cover[2];
ELEMTYPEREAL m_area[2];
Branch m_branchBuf[MAXNODES+1];
int m_branchCount;
Rect m_coverSplit;
ELEMTYPEREAL m_coverSplitArea;
};
Node* AllocNode();
void FreeNode(Node* a_node);
void InitNode(Node* a_node);
void InitRect(Rect* a_rect);
bool InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node,
Node** a_newNode, int a_level);
bool InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root,
int a_level);
Rect NodeCover(Node* a_node);
bool AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode);
void DisconnectBranch(Node* a_node, int a_index);
int PickBranch(Rect* a_rect, Node* a_node);
Rect CombineRect(Rect* a_rectA, Rect* a_rectB);
void SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode);
ELEMTYPEREAL RectSphericalVolume(Rect* a_rect);
ELEMTYPEREAL RectVolume(Rect* a_rect);
ELEMTYPEREAL CalcRectVolume(Rect* a_rect);
void GetBranches(Node* a_node, Branch* a_branch, PartitionVars* a_parVars);
void ChoosePartition(PartitionVars* a_parVars, int a_minFill);
void LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars);
void InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill);
void PickSeeds(PartitionVars* a_parVars);
void Classify(int a_index, int a_group, PartitionVars* a_parVars);
bool RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root);
bool RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node,
ListNode** a_listNode);
ListNode* AllocListNode();
void FreeListNode(ListNode* a_listNode);
bool Overlap(Rect* a_rectA, Rect* a_rectB) const;
void ReInsert(Node* a_node, ListNode** a_listNode);
bool Search(Node* a_node, Rect* a_rect, int& a_foundCount,
bool a_resultCallback(DATATYPE a_data, void* a_context),
void* a_context) const;
void RemoveAllRec(Node* a_node);
void Reset();
void CountRec(Node* a_node, int& a_count);
/// Root of tree
Node* m_root;
/// Unit sphere constant for required number of dimensions
ELEMTYPEREAL m_unitSphereVolume;
};
RTREE_TEMPLATE
RTREE_QUAL::RTree()
{
Q_ASSERT(MAXNODES > MINNODES);
Q_ASSERT(MINNODES > 0);
// We only support machine word size simple data type eg. integer index or
// object pointer. Since we are storing as union with non data branch
Q_ASSERT(sizeof(DATATYPE) == sizeof(void*) || sizeof(DATATYPE) == sizeof(int));
// Precomputed volumes of the unit spheres for the first few dimensions
const float UNIT_SPHERE_VOLUMES[] = {
0.000000f, 2.000000f, 3.141593f, // Dimension 0,1,2
4.188790f, 4.934802f, 5.263789f, // Dimension 3,4,5
5.167713f, 4.724766f, 4.058712f, // Dimension 6,7,8
3.298509f, 2.550164f, 1.884104f, // Dimension 9,10,11
1.335263f, 0.910629f, 0.599265f, // Dimension 12,13,14
0.381443f, 0.235331f, 0.140981f, // Dimension 15,16,17
0.082146f, 0.046622f, 0.025807f, // Dimension 18,19,20
};
m_root = AllocNode();
m_root->m_level = 0;
m_unitSphereVolume = (ELEMTYPEREAL)UNIT_SPHERE_VOLUMES[NUMDIMS];
}
RTREE_TEMPLATE
RTREE_QUAL::~RTree()
{
Reset(); // Free, or reset node memory
}
RTREE_TEMPLATE
void RTREE_QUAL::Insert(const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId)
{
#ifndef QT_NO_DEBUG
for (int index=0; index<NUMDIMS; ++index)
Q_ASSERT(a_min[index] <= a_max[index]);
#endif // QT_NO_DEBUG
Rect rect;
for (int axis=0; axis<NUMDIMS; ++axis) {
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
InsertRect(&rect, a_dataId, &m_root, 0);
}
RTREE_TEMPLATE
void RTREE_QUAL::Remove(const ELEMTYPE a_min[NUMDIMS],
const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId)
{
#ifndef QT_NO_DEBUG
for (int index=0; index<NUMDIMS; ++index)
Q_ASSERT(a_min[index] <= a_max[index]);
#endif // QT_NO_DEBUG
Rect rect;
for (int axis=0; axis<NUMDIMS; ++axis) {
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
RemoveRect(&rect, a_dataId, &m_root);
}
RTREE_TEMPLATE
int RTREE_QUAL::Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS],
bool a_resultCallback(DATATYPE a_data, void* a_context), void* a_context) const
{
#ifndef QT_NO_DEBUG
for (int index=0; index<NUMDIMS; ++index)
Q_ASSERT(a_min[index] <= a_max[index]);
#endif // QT_NO_DEBUG
Rect rect;
for (int axis=0; axis<NUMDIMS; ++axis) {
rect.m_min[axis] = a_min[axis];
rect.m_max[axis] = a_max[axis];
}
// NOTE: May want to return search result another way, perhaps returning
// the number of found elements here.
int foundCount = 0;
Search(m_root, &rect, foundCount, a_resultCallback, a_context);
return foundCount;
}
RTREE_TEMPLATE
int RTREE_QUAL::Count()
{
int count = 0;
CountRec(m_root, count);
return count;
}
RTREE_TEMPLATE
void RTREE_QUAL::CountRec(Node* a_node, int& a_count)
{
if (a_node->IsInternalNode()) { // not a leaf node
for (int index = 0; index < a_node->m_count; ++index)
CountRec(a_node->m_branch[index].m_child, a_count);
} else { // A leaf node
a_count += a_node->m_count;
}
}
RTREE_TEMPLATE
void RTREE_QUAL::RemoveAll()
{
// Delete all existing nodes
Reset();
m_root = AllocNode();
m_root->m_level = 0;
}
RTREE_TEMPLATE
void RTREE_QUAL::Reset()
{
#ifdef RTREE_DONT_USE_MEMPOOLS
// Delete all existing nodes
RemoveAllRec(m_root);
#else // RTREE_DONT_USE_MEMPOOLS
// Just reset memory pools. We are not using complex types
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
RTREE_TEMPLATE
void RTREE_QUAL::RemoveAllRec(Node* a_node)
{
Q_ASSERT(a_node);
Q_ASSERT(a_node->m_level >= 0);
if (a_node->IsInternalNode()) { // This is an internal node in the tree
for (int index=0; index < a_node->m_count; ++index)
RemoveAllRec(a_node->m_branch[index].m_child);
}
FreeNode(a_node);
}
RTREE_TEMPLATE
typename RTREE_QUAL::Node* RTREE_QUAL::AllocNode()
{
Node* newNode;
#ifdef RTREE_DONT_USE_MEMPOOLS
newNode = new Node;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
InitNode(newNode);
return newNode;
}
RTREE_TEMPLATE
void RTREE_QUAL::FreeNode(Node* a_node)
{
Q_ASSERT(a_node);
#ifdef RTREE_DONT_USE_MEMPOOLS
delete a_node;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
// Allocate space for a node in the list used in DeletRect to
// store Nodes that are too empty.
RTREE_TEMPLATE
typename RTREE_QUAL::ListNode* RTREE_QUAL::AllocListNode()
{
#ifdef RTREE_DONT_USE_MEMPOOLS
return new ListNode;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
RTREE_TEMPLATE
void RTREE_QUAL::FreeListNode(ListNode* a_listNode)
{
#ifdef RTREE_DONT_USE_MEMPOOLS
delete a_listNode;
#else // RTREE_DONT_USE_MEMPOOLS
// EXAMPLE
#endif // RTREE_DONT_USE_MEMPOOLS
}
RTREE_TEMPLATE
void RTREE_QUAL::InitNode(Node* a_node)
{
a_node->m_count = 0;
a_node->m_level = -1;
}
RTREE_TEMPLATE
void RTREE_QUAL::InitRect(Rect* a_rect)
{
for (int index = 0; index < NUMDIMS; ++index) {
a_rect->m_min[index] = (ELEMTYPE)0;
a_rect->m_max[index] = (ELEMTYPE)0;
}
}
// Inserts a new data rectangle into the index structure.
// Recursively descends tree, propagates splits back up.
// Returns 0 if node was not split. Old node updated.
// If node was split, returns 1 and sets the pointer pointed to by
// new_node to point to the new node. Old node updated to become one of two.
// The level argument specifies the number of steps up from the leaf
// level to insert; e.g. a data rectangle goes in at level = 0.
RTREE_TEMPLATE
bool RTREE_QUAL::InsertRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node,
Node** a_newNode, int a_level)
{
Q_ASSERT(a_rect && a_node && a_newNode);
Q_ASSERT(a_level >= 0 && a_level <= a_node->m_level);
int index;
Branch branch;
Node* otherNode;
// Still above level for insertion, go down tree recursively
if (a_node->m_level > a_level) {
index = PickBranch(a_rect, a_node);
if (!InsertRectRec(a_rect, a_id, a_node->m_branch[index].m_child, &otherNode, a_level)) {
// Child was not split
a_node->m_branch[index].m_rect = CombineRect(a_rect, &(a_node->m_branch[index].m_rect));
return false;
} else { // Child was split
a_node->m_branch[index].m_rect = NodeCover(a_node->m_branch[index].m_child);
branch.m_child = otherNode;
branch.m_rect = NodeCover(otherNode);
return AddBranch(&branch, a_node, a_newNode);
}
// Have reached level for insertion. Add rect, split if necessary
} else if (a_node->m_level == a_level) {
branch.m_rect = *a_rect;
branch.m_child = (Node*) a_id;
// Child field of leaves contains id of data record
return AddBranch(&branch, a_node, a_newNode);
} else {
// Should never occur
Q_ASSERT(0);
return false;
}
}
// Insert a data rectangle into an index structure.
// InsertRect provides for splitting the root;
// returns 1 if root was split, 0 if it was not.
// The level argument specifies the number of steps up from the leaf
// level to insert; e.g. a data rectangle goes in at level = 0.
// InsertRect2 does the recursion.
//
RTREE_TEMPLATE
bool RTREE_QUAL::InsertRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root,
int a_level)
{
Q_ASSERT(a_rect && a_root);
Q_ASSERT(a_level >= 0 && a_level <= (*a_root)->m_level);
#ifndef QT_NO_DEBUG
for (int index=0; index < NUMDIMS; ++index)
Q_ASSERT(a_rect->m_min[index] <= a_rect->m_max[index]);
#endif // QT_NO_DEBUG
Node* newRoot;
Node* newNode;
Branch branch;
// Root split
if (InsertRectRec(a_rect, a_id, *a_root, &newNode, a_level)) {
newRoot = AllocNode(); // Grow tree taller and new root
newRoot->m_level = (*a_root)->m_level + 1;
branch.m_rect = NodeCover(*a_root);
branch.m_child = *a_root;
AddBranch(&branch, newRoot, NULL);
branch.m_rect = NodeCover(newNode);
branch.m_child = newNode;
AddBranch(&branch, newRoot, NULL);
*a_root = newRoot;
return true;
}
return false;
}
// Find the smallest rectangle that includes all rectangles in branches of
// a node.
RTREE_TEMPLATE
typename RTREE_QUAL::Rect RTREE_QUAL::NodeCover(Node* a_node)
{
Q_ASSERT(a_node);
int firstTime = true;
Rect rect;
InitRect(&rect);
for (int index = 0; index < a_node->m_count; ++index) {
if (firstTime) {
rect = a_node->m_branch[index].m_rect;
firstTime = false;
} else {
rect = CombineRect(&rect, &(a_node->m_branch[index].m_rect));
}
}
return rect;
}
// Add a branch to a node. Split the node if necessary.
// Returns 0 if node not split. Old node updated.
// Returns 1 if node split, sets *new_node to address of new node.
// Old node updated, becomes one of two.
RTREE_TEMPLATE
bool RTREE_QUAL::AddBranch(Branch* a_branch, Node* a_node, Node** a_newNode)
{
Q_ASSERT(a_branch);
Q_ASSERT(a_node);
if (a_node->m_count < MAXNODES) { // Split won't be necessary
a_node->m_branch[a_node->m_count] = *a_branch;
++a_node->m_count;
return false;
} else {
Q_ASSERT(a_newNode);
SplitNode(a_node, a_branch, a_newNode);
return true;
}
}
// Disconnect a dependent node.
// Caller must return (or stop using iteration index) after this as count has
// changed
RTREE_TEMPLATE
void RTREE_QUAL::DisconnectBranch(Node* a_node, int a_index)
{
Q_ASSERT(a_node && (a_index >= 0) && (a_index < MAXNODES));
Q_ASSERT(a_node->m_count > 0);
// Remove element by swapping with the last element to prevent gaps in array
a_node->m_branch[a_index] = a_node->m_branch[a_node->m_count - 1];
--a_node->m_count;
}
// Pick a branch. Pick the one that will need the smallest increase
// in area to accomodate the new rectangle. This will result in the
// least total area for the covering rectangles in the current node.
// In case of a tie, pick the one which was smaller before, to get
// the best resolution when searching.
RTREE_TEMPLATE
int RTREE_QUAL::PickBranch(Rect* a_rect, Node* a_node)
{
Q_ASSERT(a_rect && a_node);
bool firstTime = true;
ELEMTYPEREAL increase;
ELEMTYPEREAL bestIncr = (ELEMTYPEREAL)-1;
ELEMTYPEREAL area;
ELEMTYPEREAL bestArea;
int best = 0;
Rect tempRect;
for (int index=0; index < a_node->m_count; ++index) {
Rect* curRect = &a_node->m_branch[index].m_rect;
area = CalcRectVolume(curRect);
tempRect = CombineRect(a_rect, curRect);
increase = CalcRectVolume(&tempRect) - area;
if ((increase < bestIncr) || firstTime) {
best = index;
bestArea = area;
bestIncr = increase;
firstTime = false;
} else if ((increase == bestIncr) && (area < bestArea)) {
best = index;
bestArea = area;
bestIncr = increase;
}
}
return best;
}
// Combine two rectangles into larger one containing both
RTREE_TEMPLATE
typename RTREE_QUAL::Rect RTREE_QUAL::CombineRect(Rect* a_rectA, Rect* a_rectB)
{
Q_ASSERT(a_rectA && a_rectB);
Rect newRect;
for (int index = 0; index < NUMDIMS; ++index) {
newRect.m_min[index] = qMin(a_rectA->m_min[index], a_rectB->m_min[index]);
newRect.m_max[index] = qMax(a_rectA->m_max[index], a_rectB->m_max[index]);
}
return newRect;
}
// Split a node.
// Divides the nodes branches and the extra one between two nodes.
// Old node is one of the new ones, and one really new one is created.
// Tries more than one method for choosing a partition, uses best result.
RTREE_TEMPLATE
void RTREE_QUAL::SplitNode(Node* a_node, Branch* a_branch, Node** a_newNode)
{
Q_ASSERT(a_node);
Q_ASSERT(a_branch);
// Could just use local here, but member or external is faster since it is
// reused
PartitionVars localVars;
PartitionVars* parVars = &localVars;
int level;
// Load all the branches into a buffer, initialize old node
level = a_node->m_level;
GetBranches(a_node, a_branch, parVars);
// Find partition
ChoosePartition(parVars, MINNODES);
// Put branches from buffer into 2 nodes according to chosen partition
*a_newNode = AllocNode();
(*a_newNode)->m_level = a_node->m_level = level;
LoadNodes(a_node, *a_newNode, parVars);
Q_ASSERT((a_node->m_count + (*a_newNode)->m_count) == parVars->m_total);
}
// Calculate the n-dimensional volume of a rectangle
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::RectVolume(Rect* a_rect)
{
Q_ASSERT(a_rect);
ELEMTYPEREAL volume = (ELEMTYPEREAL)1;
for (int index=0; index<NUMDIMS; ++index)
volume *= a_rect->m_max[index] - a_rect->m_min[index];
Q_ASSERT(volume >= (ELEMTYPEREAL)0);
return volume;
}
// The exact volume of the bounding sphere for the given Rect
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::RectSphericalVolume(Rect* a_rect)
{
Q_ASSERT(a_rect);
ELEMTYPEREAL sumOfSquares = (ELEMTYPEREAL)0;
ELEMTYPEREAL radius;
for (int index=0; index < NUMDIMS; ++index) {
ELEMTYPEREAL halfExtent = ((ELEMTYPEREAL)a_rect->m_max[index]
- (ELEMTYPEREAL)a_rect->m_min[index]) * 0.5f;
sumOfSquares += halfExtent * halfExtent;
}
radius = (ELEMTYPEREAL)sqrt(sumOfSquares);
// Pow maybe slow, so test for common dims like 2,3 and just use x*x, x*x*x.
if (NUMDIMS == 3)
return (radius * radius * radius * m_unitSphereVolume);
else if (NUMDIMS == 2)
return (radius * radius * m_unitSphereVolume);
else
return (ELEMTYPEREAL)(pow(radius, NUMDIMS) * m_unitSphereVolume);
}
// Use one of the methods to calculate retangle volume
RTREE_TEMPLATE
ELEMTYPEREAL RTREE_QUAL::CalcRectVolume(Rect* a_rect)
{
#ifdef RTREE_USE_SPHERICAL_VOLUME
return RectSphericalVolume(a_rect); // Slower but helps certain merge cases
#else // RTREE_USE_SPHERICAL_VOLUME
return RectVolume(a_rect); // Faster but can cause poor merges
#endif // RTREE_USE_SPHERICAL_VOLUME
}
// Load branch buffer with branches from full node plus the extra branch.
RTREE_TEMPLATE
void RTREE_QUAL::GetBranches(Node* a_node, Branch* a_branch,
PartitionVars* a_parVars)
{
Q_ASSERT(a_node);
Q_ASSERT(a_branch);
Q_ASSERT(a_node->m_count == MAXNODES);
// Load the branch buffer
for (int index=0; index < MAXNODES; ++index)
a_parVars->m_branchBuf[index] = a_node->m_branch[index];
a_parVars->m_branchBuf[MAXNODES] = *a_branch;
a_parVars->m_branchCount = MAXNODES + 1;
// Calculate rect containing all in the set
a_parVars->m_coverSplit = a_parVars->m_branchBuf[0].m_rect;
for (int index=1; index < MAXNODES+1; ++index)
a_parVars->m_coverSplit = CombineRect(&a_parVars->m_coverSplit,
&a_parVars->m_branchBuf[index].m_rect);
a_parVars->m_coverSplitArea = CalcRectVolume(&a_parVars->m_coverSplit);
InitNode(a_node);
}
// Method #0 for choosing a partition:
// As the seeds for the two groups, pick the two rects that would waste the
// most area if covered by a single rectangle, i.e. evidently the worst pair
// to have in the same group.
// Of the remaining, one at a time is chosen to be put in one of the two groups.
// The one chosen is the one with the greatest difference in area expansion
// depending on which group - the rect most strongly attracted to one group
// and repelled from the other.
// If one group gets too full (more would force other group to violate min
// fill requirement) then other group gets the rest.
// These last are the ones that can go in either group most easily.
RTREE_TEMPLATE
void RTREE_QUAL::ChoosePartition(PartitionVars* a_parVars, int a_minFill)
{
Q_ASSERT(a_parVars);
ELEMTYPEREAL biggestDiff;
int group, chosen = 0, betterGroup = 0;
InitParVars(a_parVars, a_parVars->m_branchCount, a_minFill);
PickSeeds(a_parVars);
while (((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total)
&& (a_parVars->m_count[0] < (a_parVars->m_total - a_parVars->m_minFill))
&& (a_parVars->m_count[1] < (a_parVars->m_total - a_parVars->m_minFill))) {
biggestDiff = (ELEMTYPEREAL) -1;
for (int index=0; index<a_parVars->m_total; ++index) {
if (!a_parVars->m_taken[index]) {
Rect* curRect = &a_parVars->m_branchBuf[index].m_rect;
Rect rect0 = CombineRect(curRect, &a_parVars->m_cover[0]);
Rect rect1 = CombineRect(curRect, &a_parVars->m_cover[1]);
ELEMTYPEREAL growth0 = CalcRectVolume(&rect0) - a_parVars->m_area[0];
ELEMTYPEREAL growth1 = CalcRectVolume(&rect1) - a_parVars->m_area[1];
ELEMTYPEREAL diff = growth1 - growth0;
if (diff >= 0) {
group = 0;
} else {
group = 1;
diff = -diff;
}
if (diff > biggestDiff) {
biggestDiff = diff;
chosen = index;
betterGroup = group;
} else if ((diff == biggestDiff) && (a_parVars->m_count[group]
< a_parVars->m_count[betterGroup])) {
chosen = index;
betterGroup = group;
}
}
}
Classify(chosen, betterGroup, a_parVars);
}
// If one group too full, put remaining rects in the other
if ((a_parVars->m_count[0] + a_parVars->m_count[1]) < a_parVars->m_total) {
if (a_parVars->m_count[0] >= a_parVars->m_total - a_parVars->m_minFill)
group = 1;
else
group = 0;
for (int index=0; index<a_parVars->m_total; ++index) {
if (!a_parVars->m_taken[index])
Classify(index, group, a_parVars);
}
}
Q_ASSERT((a_parVars->m_count[0] + a_parVars->m_count[1]) == a_parVars->m_total);
Q_ASSERT((a_parVars->m_count[0] >= a_parVars->m_minFill) &&
(a_parVars->m_count[1] >= a_parVars->m_minFill));
}