-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.cpp
140 lines (118 loc) · 4.83 KB
/
test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
// Copyright (C) 2012, 2013 Rhys Ulerich
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
/** @file
* Test \ref ar::burg_method against synthetic data.
*/
#include <algorithm>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <iterator>
#include <vector>
#include "ar.hpp"
#include "optionparser.h"
#include "real.hpp"
#define STRINGIFY_HELPER(x) #x
#define STRINGIFY(x) STRINGIFY_HELPER(x)
// Command line argument declarations for optionparser.h usage
enum OptionIndex {
UNKNOWN, HELP, SUBMEAN
};
const option::Descriptor usage[] = {
{UNKNOWN, 0, "", "", option::Arg::None,
"Usage: test COEFFICIENTS DATA\n"
"Compute ar::burg_method deviation from known coefficients on test data ("
/* Working precision */ STRINGIFY(REAL) ").\n"
"\n"
"Options:" },
{0,0,"","",option::Arg::None,0}, // table break
{HELP, 0, "h", "help", option::Arg::None,
" -h \t--help \tDisplay this help message and immediately exit" },
{SUBMEAN, 0, "s", "subtract-mean", option::Arg::None,
" -s \t--subtract-mean \tSubtract the sample mean from the incoming data" },
{0,0,0,0,0,0}
};
// Computes percent difference of \c b against theoretical result \c a.
template<typename FPT> FPT pdiff(FPT a, FPT b) { return (b - a) / a * 100; }
template<typename T> struct sum_error : public std::binary_function<T,T,T> {
T operator() (T a, T b) {using std::abs; return a + abs(b);}
};
// Test burg_method against synthetic data
int main(int argc, char *argv[])
{
using namespace ar;
using namespace std;
string filename_coeffs, filename_data;
bool subtract_mean = false;
{
option::Stats stats(usage, argc-(argc>0), argv+(argc>0));
vector<option::Option> options(stats.options_max + stats.buffer_max);
option::Parser parse(usage, argc-(argc>0), argv+(argc>0),
&options[0], &options[stats.options_max]);
if (parse.error() || options[UNKNOWN]) {
for (option::Option* o = options[UNKNOWN]; o; o = o->next()) {
cerr << "Unknown option: " << o->name << "\n";
}
return EXIT_FAILURE;
}
if (options[HELP]) {
printUsage(cout, usage);
return EXIT_SUCCESS;
}
if (options[SUBMEAN])
subtract_mean = true;
if (parse.nonOptionsCount() != 2) {
cerr << "Missing one or more file operands. Try --help.\n";
return EXIT_FAILURE;
}
filename_coeffs = parse.nonOption(0);
filename_data = parse.nonOption(1);
}
// Read "exact" coefficients
vector<real> exact;
{
ifstream f;
f.exceptions(ifstream::badbit);
f.open(filename_coeffs.c_str());
copy(istream_iterator<real>(f), istream_iterator<real>(),
back_inserter(exact));
}
vector<real> est(exact.size()), cor(exact.size() + 1);
// Read time series data
ifstream f;
f.exceptions(ifstream::badbit);
f.open(filename_data.c_str());
// Use burg_method to fit an AR model and characterize it completely
size_t maxorder = exact.size();
real mean, sigma2e, gain;
burg_method(istream_iterator<real>(f), istream_iterator<real>(),
mean, maxorder, est.begin(), &sigma2e, &gain, cor.begin(),
subtract_mean, false);
// Close input file
f.close();
// Solve Yule-Walker equations using Zohar's algorithm as consistency check
// Given right hand side containing rho_1, ..., rho_p the solution should
// be -a_1, ..., -a_p on success so adding to it a_1, ..., a_p gives errors.
vector<real> rhs(++cor.begin(), cor.end());
zohar_linear_solve(++cor.begin(), --cor.end(), rhs.begin());
transform(rhs.begin(), rhs.end(), est.begin(), rhs.begin(), plus<real>());
real res = accumulate(rhs.begin(), rhs.end(), real(0), sum_error<real>());
printf("%22s %22s %22s\n", "Nominal Value", "burg_method", "Percent Diff");
printf("%22s %22s %22s\n", "-------------", "-----------", "------------");
for (vector<real>::const_iterator i = exact.begin(), j = est.begin();
i != exact.end(); ++i, ++j)
{
printf("%22.14g %22.14g %22.14g\n",
(double) *i, (double) *j, (double) pdiff(*i, *j));
}
printf("\n");
printf("%22s %22.14g\n", "mean of data:", (double) mean );
printf("%22s %22.14g\n", "\\sigma^2_\\epsilon:", (double) sigma2e );
printf("%22s %22.14g\n", "signal gain:", (double) gain );
printf("%22s %22.14g\n", "\\sigma^2_x:", (double) (gain*sigma2e));
printf("%22s %22.14g\n", "Yule-Walker residual:", (double) res );
return 0;
}