-
Notifications
You must be signed in to change notification settings - Fork 0
/
FiniteSampleCriteria.tex
441 lines (420 loc) · 12.7 KB
/
FiniteSampleCriteria.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
\documentclass[12pt,letterpaper]{article}
\usepackage{amsmath, amssymb, graphics}
\usepackage{hyperref}
\usepackage{mathtools}
\usepackage{fullpage}
\mathtoolsset{showonlyrefs,showmanualtags}
% \allowdisplaybreaks[1]
\newcommand{\Pochhammer}[2]{\left(#1\right)_{#2}}
\begin{document}
\section*{Finite sample criteria for autoregressive order selection}
This document details autoregressive model selection criteria following
Broersen.\footnote{Broersen, P. M. T. ``Finite sample criteria for
autoregressive order selection.'' IEEE Transactions on Signal Processing 48
(December 2000): 3550-3558. \url{http://dx.doi.org/10.1109/78.887047}.}
Emphasis is placed on converting the formulas into forms efficiently computable
when evaluating a single model. When evaluating a hierarchy of models,
computing using intermediate results may be more efficient.
\subsection*{Setting}
An AR(K) process and its AR(p) model are given by
\begin{subequations}
\begin{align}
x_n+a_1x_{n-1}+\dots+a_Kx_{n-K}&=\epsilon_n
\\
{x}_n+\hat{a}_1x_{n-1}+\dots+\hat{a}_px_{n-p}&=\hat{\epsilon}_n
\end{align}
\end{subequations}
in which $\epsilon_n\sim N\left(0,\sigma_{\epsilon}^2\right)$ and
$\hat{\epsilon}_n\sim N\left(0,\hat{\sigma}_{\epsilon}^2\right)$.
Model selection criteria for evaluating which of several candidates most
parsimoniously fits an AR(K) process generally have the form
\begin{align}
\label{eq:general}
\text{criterion}\!\left(v_\text{method},N,p,\alpha\right)
&=
\ln \text{residual}\!\left(p,v_\text{method}\right)
+
\text{overfit}\!\left(\text{criterion},v_\text{method},N,p,\alpha\right)
.
\end{align}
Among all candidates and using a given criterion, the ``best'' model minimizes
the criterion. Here, $N$ represents the number of samples used to estimate
model parameters, $p$ denotes the order of the estimated model,
$v_\text{method}=v_\text{method}\!\left(N,i\right)$ is the method-specific
estimation variance for model order $i$, and $\alpha$ is an optional factor
with a criterion-dependent meaning. When estimating
$\hat{a}_1,\dots,\hat{a}_p$ given sample data $x_n$, the residual variance is
\begin{align}
\text{residual}\!\left(v_\text{method},p\right)
=
\text{residual}\!\left(p\right)
&=
\hat{\sigma}_\epsilon^2
.
\end{align}
Therefore the left term in~\eqref{eq:general} penalizes misfitting the data
independently of the estimation method used. One may therefore distinguish
among criterion using only the overfitting penalty term, namely
$\text{overfit}\!\left(\text{criterion},v_\text{method},N,p,\alpha\right)$.
In Broersen's work, the penalty term depends upon the model estimation
method used through the estimation variance $v$:
\begin{subequations}
\label{eq:v1}
\begin{align}
v_\text{Yule--Walker}\!\left(N,i\right) &= \frac{N-i}{N\left(N+2\right)}
&
&i \neq 0
\\
v_\text{Burg}\!\left(N,i\right) &= \frac{1}{N + 1 - i}
&
&i \neq 0
\\
v_\text{LSFB}\!\left(N,i\right) &= \frac{1}{N + 1.5 - 1.5i}
&
&i \neq 0
\\
v_\text{LSF}\!\left(N,i\right) &= \frac{1}{N + 2 - 2i}
&
&i \neq 0
\end{align}
\end{subequations}
Here ``LSFB'' and ``LSF'' are shorthand for least squares estimation minimizing
both the forward and backward prediction or only the forward prediction,
respectively. The estimation variance for $i=0$ depends only on whether or not
the sample mean has been subtracted:
\begin{subequations}
\label{eq:v0}
\begin{align}
v\!\left(N,0\right) &= \frac{1}{N}
&
&\text{sample mean subtracted}
\\
v\!\left(N,0\right) &= 0
&
&\text{sample mean retained}
\end{align}
\end{subequations}
\subsection*{Infinite sample overfit penalty terms}
The method-independent generalized information criterion (GIC) has overfitting
penalty
\begin{align}
\text{overfit}\!\left(\text{GIC},N,p,\alpha\right)
&=
\alpha \frac{p}{N}
\end{align}
independent of $v_\text{model}$. The Akaike information criterion
(AIC) has
\begin{align}
\label{eq:aic}
\text{overfit}\!\left(\text{AIC},N,p\right)
&=
\text{overfit}\!\left(\text{GIC},N,p,2\right)
\end{align}
while the consistent criterion BIC and minimally consistent criterion
(MCC) have
\begin{align}
\label{eq:bic}
\text{overfit}\!\left(\text{BIC},N,p\right)
&=
\text{overfit}\!\left(\text{GIC},N,p,\ln{} N\right)
\\
\label{eq:mcc}
\text{overfit}\!\left(\text{MCC},N,p\right)
&=
\text{overfit}\!\left(\text{GIC},N,p,2\ln\ln{}N\right)
.
\end{align}
Additionally, Broersen uses $\alpha = 3$ with GIC referring to the result as
GIC(p,3). The asymptotically-corrected Akaike information criterion
($\text{AIC}_\text{C}$) of Hurvich and Tsai\footnote{Hurvich, Clifford M. and
Chih-Ling Tsai. "Regression and time series model selection in small samples."
Biometrika 76 (June 1989): 297-307. http://dx.doi.org/10.1093/biomet/76.2.297}
is
\begin{align}
\text{overfit}\!\left(\text{AIC}_\text{C},N,p\right)
&=
\frac{2p}{N-p-1}
.
\end{align}
\subsection*{Finite sample overfit penalty terms}
\subsubsection*{Finite information criterion\footnote{FIC is mistakenly called
the ``finite sample information criterion'' on page 3551 of Broersen 2000 but
referred to correctly as the ``finite information criterion'' on page 187 of
Broersen's 2006 book.}}
The finite information criterion (FIC) is an extension of GIC meant to account
for finite sample size and the estimation method employed. The FIC overfit
penalty term is
\begin{align}
\text{overfit}\!\left(\text{FIC},v_\text{method},N,p,\alpha\right)
&=
\alpha \sum_{i=0}^{p} v_\text{method}\!\left(N,i\right)
\notag
\\
&=
\alpha\left(
v\!\left(N,0\right)
+ \sum_{i=1}^{p} v_\text{method}\!\left(N,i\right)
\right)
\end{align}
where $v\!\left(N,0\right)$ is evaluated using \eqref{eq:v0} and
$v_\text{method}\!\left(N,i\right)$ from \eqref{eq:v1}. The factor $\alpha$
may be chosen as in~\eqref{eq:aic}, \eqref{eq:bic}, or~\eqref{eq:mcc}. Again,
Broersen uses $\alpha = 3$ calling the result FIC(p,3).
By direct computation one finds the following:
\begin{subequations}
\begin{align}
\text{overfit}\!\left(\text{FIC},v_\text{Yule--Walker},N,p,\alpha\right)
&=
\alpha\left(
v\!\left(N,0\right)
- \frac{p \left(1-2 N+p\right)}{2 N \left(N+2\right)}
\right)
\\
\text{overfit}\!\left(\text{FIC},v_\text{Burg},N,p,\alpha\right)
&=
\alpha\left(
v\!\left(N,0\right)
- \psi\!\left(N+1\right)
+ \psi\!\left(N+1-p\right)
\right)
\\
\text{overfit}\!\left(\text{FIC},v_\text{LSFB},N,p,\alpha\right)
&=
\alpha\left(
v\!\left(N,0\right)
- \frac{2}{3} \left(
\psi\!\left(\frac{3+2N}{3}\right)
- \psi\!\left(\frac{3+2N}{3}-p\right)
\right)
\right)
\\
\text{overfit}\!\left(\text{FIC},v_\text{LSF},N,p,\alpha\right)
&=
\alpha\left(
v\!\left(N,0\right)
- \frac{1}{2} \left(
\psi\!\left(\frac{2+N}{2}\right)
- \psi\!\left(\frac{2+N}{2}-p\right)
\right)
\right)
\end{align}
\end{subequations}
The simplifications underneath the Burg, LSFB, and LSF results use that
\begin{align}
\sum_{i=1}^{p} \frac{1}{N+a-ai}
&=
\sum_{i=0}^{p-1} \frac{1}{N-ai}
=
\frac{1}{a} \sum_{i=0}^{p-1} \frac{1}{\frac{N}{a}-i}
=
\frac{1}{a} \left(
\psi\!\left(\frac{N}{a}+1\right)
- \psi\!\left(\frac{N}{a}-p+1\right)
\right)
\end{align}
holds $\forall{}a\in\mathbb{R}$ because the digamma function $\psi$
telescopes according to
\begin{align}
\psi\!\left(x+1\right)
=
\frac{1}{x}
+
\psi\!\left(x\right)
&\implies
\psi\!\left(x+k\right)
-
\psi\!\left(x\right)
=
\sum_{i=0}^{k-1} \frac{1}{x + i}
.
\end{align}
For strictly positive abscissae, $\psi$ may be numerically evaluated following
Bernardo.\footnote{Bernardo, J. M. ``Algorithm AS 103: Psi (digamma)
function.'' Journal of the Royal Statistical Society. Series C (Applied
Statistics) 25 (1976). \url{http://www.jstor.org/stable/2347257}}
\subsubsection*{Finite sample information criterion}
The finite sample information criterion (FSIC) is a finite sample approximation
to the Kullback--Leibler discrepancy\footnote{Presumably FSIC could be related,
through the Kullback symmetric divergence, to the KICc and AKICc criteria
proposed by Seghouane, A. K. and M. Bekara. ``A Small Sample Model Selection
Criterion Based on Kullback's Symmetric Divergence.'' IEEE Transactions on
Signal Processing 52 (December 2004): 3314-3323.
\url{http://dx.doi.org/10.1109/TSP.2004.837416}.}. FSIC has the overfit penalty
term
\begin{align}
\text{overfit}\!\left(\text{FSIC},v_\text{method},N,p\right)
&=
\prod_{i=0}^{p}
\frac{
1 + v_\text{method}\!\left(N,i\right)
}{
1 - v_\text{method}\!\left(N,i\right)
}
- 1
\notag
\\
&=
\frac{
1 + v\!\left(N,0\right)
}{
1 - v\!\left(N,0\right)
}
\cdot
\prod_{i=1}^{p}
\frac{
1 + v_\text{method}\!\left(N,i\right)
}{
1 - v_\text{method}\!\left(N,i\right)
}
- 1
.
\label{eq:fsicGeneral}
\end{align}
The product in the context of the Yule--Walker estimation may be reexpressed as
\begin{align}
\prod_{i=1}^{p}
\frac{
1 + v_\text{Yule--Walker}\!\left(N,i\right)
}{
1 - v_\text{Yule--Walker}\!\left(N,i\right)
}
&=
\prod_{i=1}^{p}
\frac{
N^2 + 3N - i
}{
N^2 + N + i
}
\notag
\\
&=
\left(-1\right)^p
\frac{
\Pochhammer{1-3n-n^2}{p}
}{
\Pochhammer{1+ n-n^2}{p}
}
=
\frac{
\Pochhammer{n^2+3n-p}{p}
}{
\Pochhammer{1+n-n^2}{p}
}
\label{eq:pochYW}
\end{align}
where the ``rising factorial'' is denoted by the Pochhammer symbol
\begin{align}
\Pochhammer{x}{k} &= \frac{\Gamma\left(x+k\right)}{\Gamma\left(x\right)}
.
\end{align}
When $x$ is a negative integer and $\Gamma$ is therefore undefined, the
limiting value of the ratio is implied. The product in the context of the
Burg, LSFB, or LSF estimation methods becomes
\begin{align}
\prod_{i=1}^{p}
\frac{
1 + v_\text{Burg$\vert{}$LSFB$\vert{}$LSF}\!\left(N,i\right)
}{
1 - v_\text{Burg$\vert{}$LSFB$\vert{}$LSF}\!\left(N,i\right)
}
&=
\prod_{i=1}^{p}
\frac{
N + a\left(1-i\right) + 1
}{
N + a\left(1-i\right) - 1
}
=
\frac{
\Pochhammer{-\frac{1+N}{a}}{p}
}{
\Pochhammer{\frac{1-N}{a}}{p}
}
\label{eq:pochCommon}
\end{align}
where $a\in\mathbb{R}$ is a placeholder for a method-specific constant.
Routines for computing the Pochhammer symbol may be found in, for example,
SLATEC\footnote{ Vandevender, W. H. and K. H. Haskell. ``The SLATEC
mathematical subroutine library.'' ACM SIGNUM Newsletter 17 (September 1982):
16-21. \url{http://dx.doi.org/10.1145/1057594.1057595} } or the GNU Scientific
Library\footnote{ M. Galassi et al, GNU Scientific Library Reference Manual
(3rd Ed.), ISBN 0954612078. \url{http://www.gnu.org/software/gsl/} }. In
particular, both suggested sources handle negative integer input correctly.
By direct substitution of \eqref{eq:pochYW} or \eqref{eq:pochCommon} into
\eqref{eq:fsicGeneral} one obtains:
\begin{align}
\text{overfit}\!\left(\text{FSIC},v_\text{Yule--Walker},N,p\right)
&=
\frac{
1 + v\!\left(N,0\right)
}{
1 - v\!\left(N,0\right)
}
\cdot
\frac{
\Pochhammer{n^2+3n-p}{p}
}{
\Pochhammer{1+n-n^2}{p}
}
- 1
\\
\text{overfit}\!\left(\text{FSIC},v_\text{Burg},N,p\right)
&=
\frac{
1 + v\!\left(N,0\right)
}{
1 - v\!\left(N,0\right)
}
\cdot
\frac{
\Pochhammer{-1-N}{p}
}{
\Pochhammer{1-N}{p}
}
- 1
\\
\text{overfit}\!\left(\text{FSIC},v_\text{LSFB},N,p\right)
&=
\frac{
1 + v\!\left(N,0\right)
}{
1 - v\!\left(N,0\right)
}
\cdot
\frac{
\Pochhammer{\frac{-2-2N}{3}}{p}
}{
\Pochhammer{\frac{2-2N}{3}}{p}
}
- 1
\\
\text{overfit}\!\left(\text{FSIC},v_\text{LSF},N,p\right)
&=
\frac{
1 + v\!\left(N,0\right)
}{
1 - v\!\left(N,0\right)
}
\cdot
\frac{
\Pochhammer{\frac{-1-N}{2}}{p}
}{
\Pochhammer{\frac{1-N}{2}}{p}
}
- 1
\end{align}
\subsubsection*{Combined information criterion}
The combined information criterion (CIC) takes the behavior of FIC(p,3) at low
orders and FSIC at high orders. For any estimation method CIC has the
overfit penalty term
\begin{align}
\text{overfit}\!\left(\text{CIC},v_\text{method},N,p\right)
=
\max\Bigl\{
&\text{overfit}\!\left(\text{FSIC},v_\text{method},N,p\right),
\\
&\text{overfit}\!\left(\text{FIC},v_\text{method},N,p,3\right)
\Bigr\}
.
\end{align}
\end{document}