Skip to content

Commit

Permalink
Merge pull request #15 from trchudley/efficientcoreg
Browse files Browse the repository at this point in the history
increase memory efficiency of coreg/geomorph
  • Loading branch information
trchudley authored Jul 29, 2024
2 parents a0c4c18 + 7c18d50 commit c012481
Show file tree
Hide file tree
Showing 6 changed files with 69 additions and 34 deletions.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ The second aim is to provide (pre)processing functions _specific_ to the sort of
- Simple coregistration for quick elevation change analysis.
- Identifying/masking sea level and icebergs.

Rather than introducing custom classes, pDEMtools will always try and return DEM data as an [xarray](https://docs.xarray.dev/en/stable/) DataArray with geospatial metadata via the [rioxarray](https://corteva.github.io/rioxarray/stable/) extension. The aim is to allow the user to quickly move beyond pDEMtools into their own analysis in whatever format they desire, be that `xarray`, `numpy` or `dask` datasets, DEM-specific Python packages such as [`xdem`](https://github.com/GlacioHack/xdem) for advanced coregistration or [`richdem`](https://github.com/r-barnes/richdem) for flow analysis, or exporting to geospatial file formats for analysis beyond Python.
Rather than introducing custom classes, pDEMtools will always try and return DEM data as an [`xarray`](https://docs.xarray.dev/en/stable/) DataArray with geospatial metadata via the [`rioxarray`](https://corteva.github.io/rioxarray/stable/) extension. The aim is to allow the user to quickly move beyond pDEMtools into their own analysis in whatever format they desire, be that `xarray`, `numpy` or `dask` datasets, DEM-specific Python packages such as [`xdem`](https://github.com/GlacioHack/xdem) for advanced coregistration or [`richdem`](https://github.com/r-barnes/richdem) for flow analysis, or exporting to geospatial file formats for analysis beyond Python.

Contact: thomas.r.chudley@durham.ac.uk

Expand Down
51 changes: 40 additions & 11 deletions batch/batch_download_and_coregister.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,22 +5,31 @@
The script will download the 2 m ArcticDEM or REMA mosaic for coregistration, and then
loop through the strip record, downloading and coregistering against stable ground
identified within the BedMachine mask.
identified within the BedMachine mask. If coregistration is succesful, the file will
be saved ending *_coreg.tif. If coregistration fails (most usually because no stable
bedrock is available in the strip), the filename will not have `_coreg` appended.
Note: this will only work in regions of Greenland and Antarctica where bare rock
is exposed. If you require coregistration in other regions, please drop me an email -
I would be happy to help.
is exposed. If you require coregistration in regions outside of Greenland or Antarctica, please
drop me an email - I would be happy to help.
Tom Chudley | thomas.r.chudley@durham.ac.uk
Durham University
November 2023
v1 | 2023-11 | Initial script
v2 | 2024-07 | Updated to make *_coreg.tif fname dependent on sucessful coregistration.
"""

import os

import rioxarray as rxr
import numpy as np
import pdemtools as pdt

from glob import glob
from math import isnan

# ----------------------------------------------------------------------------------- #
# EDIT THIS SECTION TO SPECIFY DEPENDENT FILES, THE REGION, AND BOUNDS OF INTEREST
# ----------------------------------------------------------------------------------- #
Expand Down Expand Up @@ -68,9 +77,9 @@

reference_dem = pdt.load.mosaic(
dataset=dataset, # must be `arcticdem` or `rema`
resolution=2, # must be 2, 10, or 32
bounds=bounds, # (xmin, ymin, xmax, ymax) or shapely geometry
version="v4.1", # optional: desired version (defaults to most recent)
resolution=2, # must be 2, 10, or 32
bounds=bounds, # (xmin, ymin, xmax, ymax) or shapely geometry
version="v4.1", # optional: desired version (defaults to most recent)
)
reference_dem.rio.to_raster(
reference_dem_fpath, compress="ZSTD", predictor=3, zlevel=1
Expand Down Expand Up @@ -104,22 +113,42 @@

print(f"{n_strips} strips found")

i = 0
i = 1

print("\nDownloading DEM strips...")
for _, row in gdf.iterrows():
date = row.acqdate1.date()
date_str = date.strftime("%Y%m%d")
dem_id = row.dem_id

out_fpath = os.path.join(outdir, f"{date_str}_{dem_id}_coreg.tif")
out_fname = os.path.join(outdir, f"{date_str}_{dem_id}")

# If the file doesn't yet exist, download.
if len(glob(f'{out_fname}*')) == 0:

if not os.path.exists(out_fpath):
print(f"\nDownloading {i}/{n_strips} {os.path.basename(out_fpath)}...")

# download DEM
dem = pdt.load.from_search(row, bounds=bounds, bitmask=True)
dem.compute() # rioxarray uses lazy evaluation, so we can force the download using the `.compute()` function.

# pad to full size of AOI
dem = dem.rio.pad_box(*bounds, constant_values=np.nan)
dem = dem.pdt.coregister(reference_dem, bedrock_mask, max_horiz_offset=50)

# coregister DEM, with return_stats=True.
dem = dem.pdt.coregister(reference_dem, bedrock_mask, max_horiz_offset=50, return_stats=True)

# return_stats=True, so extract DEM as well as RMSE (which will be NaN if the coregisteration failed)
rmse = dem[-1]
dem = dem[0]

# check whether coreg worked, and construct filename appropriately
if isnan(rmse) == True:
out_fpath = out_fname + '.tif'
else:
out_fpath = out_fname + '_coreg.tif'

# Export to geotiff
dem.rio.to_raster(out_fpath, compress="ZSTD", predictor=3, zlevel=1)
del dem

Expand Down
2 changes: 1 addition & 1 deletion src/pdemtools/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,6 @@

from ._accessor import DemAccessor

__version__ = "0.8.3"
__version__ = "0.8.4"

__all__ = ["search", "DemAccessor"]
23 changes: 14 additions & 9 deletions src/pdemtools/_coreg.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,9 +81,9 @@ def coregisterdems(

# Apply offsets
if pn[1] != 0 and pn[2] != 0:
dem2n = shift_dem(dem2, pn.T[0], x, y)
dem2n = shift_dem(dem2, pn.T[0], x, y).astype('float32')
else:
dem2n = dem2 - pn[0].astype(np.float32)
dem2n = dem2 - pn[0].astype('float32')

# # Calculate slopes - original method from PGC
# sy, sx = np.gradient(dem2n, res)
Expand Down Expand Up @@ -159,6 +159,7 @@ def coregisterdems(

# Build design matrix.
X = np.column_stack((np.ones(n_count, dtype=np.float32), sx[n], sy[n]))
sx, sy = None, None # release for data amangement

# Solve for new adjustment.
p1 = np.reshape(np.linalg.lstsq(X, dz[n], rcond=None)[0], (-1, 1))
Expand All @@ -171,6 +172,8 @@ def coregisterdems(
r = dz[n] - yhat.T[0] # residuals
normr = np.linalg.norm(r)

dz = None # release for memory managment

rmse = normr / np.sqrt(nu)
tval = stats.t.ppf((1 - 0.32 / 2), nu)

Expand Down Expand Up @@ -286,18 +289,20 @@ def interp2_gdal(X, Y, Z, Xi, Yi, interp_str, extrapolate=False, oob_val=np.nan)
"",
interp_gdal,
)
gdal.ReprojectImage(
ds_in,
ds_out,
"",
"",
interp_gdal,
)
# gdal.ReprojectImage(
# ds_in,
# ds_out,
# "",
# "",
# interp_gdal,
# )

Zi = ds_out.GetRasterBand(1).ReadAsArray()

if not extrapolate:
interp2_fill_oob(X, Y, Zi, Xi, Yi, oob_val)

ds_in, ds_out = None, None

return Zi

Expand Down
20 changes: 10 additions & 10 deletions src/pdemtools/_geomorphometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ def _p_zt(z, w):

@numba.njit
def p_zt(z, w=2):
return _p_zt(z, w)
return _p_zt(z, w).astype('float32')


@numba.stencil(func_or_mode="constant", cval=np.nan)
Expand All @@ -28,7 +28,7 @@ def _q_zt(z, w):

@numba.njit
def q_zt(z, w=2):
return _q_zt(z, w)
return _q_zt(z, w).astype('float32')


@numba.stencil(func_or_mode="constant", cval=np.nan)
Expand All @@ -38,7 +38,7 @@ def _r_zt(z, w):

@numba.njit
def r_zt(z, w=2):
return _r_zt(z, w)
return _r_zt(z, w).astype('float32')


@numba.stencil(func_or_mode="constant", cval=np.nan)
Expand All @@ -48,7 +48,7 @@ def _t_zt(z, w):

@numba.njit
def t_zt(z, w=2):
return _t_zt(z, w)
return _t_zt(z, w).astype('float32')


@numba.stencil(func_or_mode="constant", cval=np.nan)
Expand All @@ -58,7 +58,7 @@ def _s_zt(z, w):

@numba.njit
def s_zt(z, w=2):
return _s_zt(z, w)
return _s_zt(z, w).astype('float32')


"""
Expand All @@ -85,7 +85,7 @@ def _p_f(z, w):

@numba.njit
def p_f(z, w=2):
return _p_f(z, w)
return _p_f(z, w).astype('float32')


@numba.stencil(func_or_mode="constant", cval=np.nan)
Expand All @@ -107,7 +107,7 @@ def _q_f(z, w):

@numba.njit
def q_f(z, w=2):
return _q_f(z, w)
return _q_f(z, w).astype('float32')


@numba.stencil(func_or_mode="constant", cval=np.nan)
Expand Down Expand Up @@ -142,7 +142,7 @@ def _r_f(z, w):

@numba.njit
def r_f(z, w=2):
return _r_f(z, w)
return _r_f(z, w).astype('float32')


@numba.stencil(func_or_mode="constant", cval=np.nan)
Expand Down Expand Up @@ -177,7 +177,7 @@ def _t_f(z, w):

@numba.njit
def t_f(z, w=2):
return _t_f(z, w)
return _t_f(z, w).astype('float32')


@numba.stencil(func_or_mode="constant", cval=np.nan)
Expand All @@ -204,7 +204,7 @@ def _s_f(z, w):

@numba.njit
def s_f(z, w=2):
return _s_f(z, w)
return _s_f(z, w).astype('float32')


"""
Expand Down
5 changes: 3 additions & 2 deletions tests/test_processing.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ def test_geomorphometry():

variable_min_max = {
"slope": (0.0, 24.721811294555664),
"aspect": (0.0, 360.0),
"aspect": (0.0, 360.0), # (1.3660377589985728e-05, 359.9999694824219),
"hillshade": (0.0, 1.0),
"horizontal_curvature": (-0.0007999989320524037, 0.0007856095326133072),
"vertical_curvature": (-0.027519449591636658, 0.022581202909350395),
Expand All @@ -95,6 +95,7 @@ def test_geomorphometry():
for variables in variable_min_max.keys():
min_val = dem[variables].min().item()
max_val = dem[variables].max().item()
print(f'{variables} | min: {min_val} | max: {max_val}')
assert_allclose(min_val, variable_min_max[variables][0])
assert_allclose(max_val, variable_min_max[variables][1])

Expand All @@ -113,7 +114,7 @@ def test_coregistration():
diff_coreg = (dem_2_coreg - dem_1).mean().item()

expected_diff = 15.476494902013904
expected_diff_coreg = 0.19603339082138396
expected_diff_coreg = 0.19603341170854155

# print(diff, corrected_diff)

Expand Down

0 comments on commit c012481

Please sign in to comment.