You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Dashboard designed to demonstrate the power of Machine Learning to predict failures (Remaining Useful Life (RUL)) in wind turbines. To predict the date when equipment will completely fail (RUL), XGBoost is used and achieved RMSE error is 0.033964 days, which is highly accurate.
In this project, we analyze and compare the performance of various machine learning algorithms (Linear Regression, Decision Tree, AdaBoost, XGBoost, Gradient Boosting and k- Nearest Neighbors) when used to predict hard drive failures using Backblaze data in the year 2018.