We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
embed_tokens
I am trying to train a lora in colab based on the example provided in the repository. My current yml is as follows:
base_model: /content/drive/MyDrive/models/ehartforddolphin-2.2.1-mistral-7b base_model_config: /content/drive/MyDrive/models/ehartforddolphin-2.2.1-mistral-7b model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true
load_in_8bit: false load_in_4bit: false strict: false
datasets:
dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: /content/drive/MyDrive/samantha
adapter: lora lora_model_dir:
sequence_len: 8192 sample_packing: true pad_to_sequence_len: true
lora_r: 512 lora_alpha: 512 lora_dropout: 0.05 lora_target_modules: q_proj, k_proj, v_proj, o_proj, gate_proj lora_target_linear: true lora_modules_to_save: embed_tokens, lm_head
wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model:
mlflow_experiment_name: test-test
gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 4 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002
train_on_inputs: false group_by_length: false bf16: false fp16: true tf32: false
gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false
warmup_steps: 50 eval_steps: 0.05 eval_table_size: eval_table_max_new_tokens: saves_per_epoch: 10 save_steps: debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "<|im_end|>" unk_token: "" tokens:
Many thanks in advance!
The text was updated successfully, but these errors were encountered:
No branches or pull requests
I am trying to train a lora in colab based on the example provided in the repository. My current yml is as follows:
base_model: /content/drive/MyDrive/models/ehartforddolphin-2.2.1-mistral-7b
base_model_config: /content/drive/MyDrive/models/ehartforddolphin-2.2.1-mistral-7b
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
type: sharegpt
conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: /content/drive/MyDrive/samantha
adapter: lora
lora_model_dir:
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
lora_r: 512
lora_alpha: 512
lora_dropout: 0.05
lora_target_modules: q_proj, k_proj, v_proj, o_proj, gate_proj
lora_target_linear: true
lora_modules_to_save: embed_tokens, lm_head
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
mlflow_experiment_name: test-test
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: false
fp16: true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
warmup_steps: 50
eval_steps: 0.05
eval_table_size:
eval_table_max_new_tokens:
saves_per_epoch: 10
save_steps:
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: "
"eos_token: "<|im_end|>"
unk_token: ""
tokens:
Many thanks in advance!
The text was updated successfully, but these errors were encountered: