diff --git a/tests/sweep_framework/sweeps/eltwise/unary/log10/log10.py b/tests/sweep_framework/sweeps/eltwise/unary/log10/log10.py index b9e6a6f6212b..750add6907b8 100644 --- a/tests/sweep_framework/sweeps/eltwise/unary/log10/log10.py +++ b/tests/sweep_framework/sweeps/eltwise/unary/log10/log10.py @@ -6,7 +6,6 @@ from functools import partial import torch -import random import ttnn from tests.sweep_framework.sweep_utils.utils import gen_shapes from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt @@ -14,11 +13,6 @@ from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time from models.utility_functions import torch_random -# Override the default timeout in seconds for hang detection. -TIMEOUT = 30 - -random.seed(0) - # Parameters provided to the test vector generator are defined here. # They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. # Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs. @@ -49,8 +43,7 @@ def run( *, device, ) -> list: - data_seed = random.randint(0, 20000000) - torch.manual_seed(data_seed) + torch.manual_seed(0) torch_input_tensor_a = gen_func_with_cast_tt( partial(torch_random, low=1, high=100, dtype=torch.float32), input_a_dtype diff --git a/tests/sweep_framework/sweeps/eltwise/unary/log1p/log1p.py b/tests/sweep_framework/sweeps/eltwise/unary/log1p/log1p.py index d5236c73e5ff..b9d50f5ca0d2 100644 --- a/tests/sweep_framework/sweeps/eltwise/unary/log1p/log1p.py +++ b/tests/sweep_framework/sweeps/eltwise/unary/log1p/log1p.py @@ -6,7 +6,6 @@ from functools import partial import torch -import random import ttnn from tests.sweep_framework.sweep_utils.utils import gen_shapes from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt @@ -14,11 +13,6 @@ from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time from models.utility_functions import torch_random -# Override the default timeout in seconds for hang detection. -TIMEOUT = 30 - -random.seed(0) - # Parameters provided to the test vector generator are defined here. # They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. # Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs. @@ -49,8 +43,7 @@ def run( *, device, ) -> list: - data_seed = random.randint(0, 20000000) - torch.manual_seed(data_seed) + torch.manual_seed(0) torch_input_tensor_a = gen_func_with_cast_tt( partial(torch_random, low=1, high=100, dtype=torch.float32), input_a_dtype diff --git a/tests/sweep_framework/sweeps/eltwise/unary/log2/log2.py b/tests/sweep_framework/sweeps/eltwise/unary/log2/log2.py index a2ec66fc172b..db5762d4d517 100644 --- a/tests/sweep_framework/sweeps/eltwise/unary/log2/log2.py +++ b/tests/sweep_framework/sweeps/eltwise/unary/log2/log2.py @@ -6,7 +6,6 @@ from functools import partial import torch -import random import ttnn from tests.sweep_framework.sweep_utils.utils import gen_shapes from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt @@ -14,11 +13,6 @@ from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time from models.utility_functions import torch_random -# Override the default timeout in seconds for hang detection. -TIMEOUT = 30 - -random.seed(0) - # Parameters provided to the test vector generator are defined here. # They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. # Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs. @@ -49,8 +43,7 @@ def run( *, device, ) -> list: - data_seed = random.randint(0, 20000000) - torch.manual_seed(data_seed) + torch.manual_seed(0) torch_input_tensor_a = gen_func_with_cast_tt( partial(torch_random, low=1, high=100, dtype=torch.float32), input_a_dtype diff --git a/tests/sweep_framework/sweeps/eltwise/unary/log_sigmoid/log_sigmoid.py b/tests/sweep_framework/sweeps/eltwise/unary/log_sigmoid/log_sigmoid.py index fdf97c265ba1..2600b2da40c0 100644 --- a/tests/sweep_framework/sweeps/eltwise/unary/log_sigmoid/log_sigmoid.py +++ b/tests/sweep_framework/sweeps/eltwise/unary/log_sigmoid/log_sigmoid.py @@ -6,7 +6,6 @@ from functools import partial import torch -import random import ttnn from tests.sweep_framework.sweep_utils.utils import gen_shapes from tests.tt_eager.python_api_testing.sweep_tests.generation_funcs import gen_func_with_cast_tt @@ -14,11 +13,6 @@ from tests.ttnn.utils_for_testing import check_with_pcc, start_measuring_time, stop_measuring_time from models.utility_functions import torch_random -# Override the default timeout in seconds for hang detection. -TIMEOUT = 30 - -random.seed(0) - # Parameters provided to the test vector generator are defined here. # They are defined as dict-type suites that contain the arguments to the run function as keys, and lists of possible inputs as values. # Each suite has a key name (in this case "suite_1") which will associate the test vectors to this specific suite of inputs. @@ -49,8 +43,7 @@ def run( *, device, ) -> list: - data_seed = random.randint(0, 20000000) - torch.manual_seed(data_seed) + torch.manual_seed(0) torch_input_tensor_a = gen_func_with_cast_tt( partial(torch_random, low=-4, high=10, dtype=torch.float32), input_a_dtype diff --git a/ttnn/cpp/ttnn/operations/eltwise/unary/unary_pybind.hpp b/ttnn/cpp/ttnn/operations/eltwise/unary/unary_pybind.hpp index b6c278dd944a..94bb5fd420e7 100644 --- a/ttnn/cpp/ttnn/operations/eltwise/unary/unary_pybind.hpp +++ b/ttnn/cpp/ttnn/operations/eltwise/unary/unary_pybind.hpp @@ -806,7 +806,7 @@ void bind_power(py::module& module, const unary_operation_t& operation) { } template -void bind_unary_composite(py::module& module, const unary_operation_t& operation, const std::string& description, const std::string& range = "") { +void bind_unary_composite(py::module& module, const unary_operation_t& operation, const std::string& description, const std::string& range = "", const std::string& info_doc = "") { auto doc = fmt::format( R"doc( {2} @@ -820,6 +820,9 @@ void bind_unary_composite(py::module& module, const unary_operation_t& operation Returns: ttnn.Tensor: the output tensor. + Note: + {4} + Example: >>> tensor = ttnn.from_torch(torch.tensor((1, 2), dtype=torch.bfloat16), device=device) >>> output = {1}(tensor) @@ -827,7 +830,8 @@ void bind_unary_composite(py::module& module, const unary_operation_t& operation operation.base_name(), operation.python_fully_qualified_name(), description, - range); + range, + info_doc); bind_registered_operation( module, @@ -1468,8 +1472,32 @@ void py_module(py::module& module) { )doc"); detail::bind_unary_operation(module, ttnn::log, R"doc(\mathrm{{output\_tensor}}_i = log(\mathrm{{input\_tensor}}_i))doc"); - detail::bind_unary_operation(module, ttnn::log10, R"doc(\mathrm{{output\_tensor}}_i = log10(\mathrm{{input\_tensor}}_i))doc"); - detail::bind_unary_operation(module, ttnn::log2, R"doc(\mathrm{{output\_tensor}}_i = log2(\mathrm{{input\_tensor}}_i))doc"); + detail::bind_unary_operation(module, ttnn::log10, R"doc(\mathrm{{output\_tensor}}_i = log10(\mathrm{{input\_tensor}}_i))doc", + R"doc(Supported dtypes, layouts, and ranks: + + +----------------------------+---------------------------------+-------------------+ + | Dtypes | Layouts | Ranks | + +----------------------------+---------------------------------+-------------------+ + | BFLOAT16, BFLOAT8_B | TILE | 2, 3, 4 | + +----------------------------+---------------------------------+-------------------+ + + BFLOAT8_B supported only in WHB0. + + )doc"); + + detail::bind_unary_operation(module, ttnn::log2, R"doc(\mathrm{{output\_tensor}}_i = log2(\mathrm{{input\_tensor}}_i))doc", + R"doc(Supported dtypes, layouts, and ranks: + + +----------------------------+---------------------------------+-------------------+ + | Dtypes | Layouts | Ranks | + +----------------------------+---------------------------------+-------------------+ + | BFLOAT16, BFLOAT8_B | TILE | 2, 3, 4 | + +----------------------------+---------------------------------+-------------------+ + + BFLOAT8_B supported only in WHB0. + + )doc"); + detail::bind_unary_operation(module, ttnn::logical_not, R"doc(\mathrm{{output\_tensor}}_i = \mathrm{{!input\_tensor_i}})doc", R"doc(Supports bfloat16 dtype and both TILE and ROW_MAJOR layout)doc"); detail::bind_unary_operation(module, ttnn::ltz, R"doc(\mathrm{{output\_tensor}}_i = (\mathrm{{input\_tensor_i\ < 0}}))doc", R"doc(Supported dtypes, layouts, and ranks: @@ -1513,7 +1541,16 @@ void py_module(py::module& module) { detail::bind_unary_operation(module, ttnn::square, R"doc(\mathrm{{output\_tensor}}_i = square(\mathrm{{input\_tensor}}_i))doc"); detail::bind_unary_operation(module, ttnn::tan, R"doc(\mathrm{{output\_tensor}}_i = tan(\mathrm{{input\_tensor}}_i))doc"); detail::bind_unary_operation(module, ttnn::tanh, R"doc(\mathrm{{output\_tensor}}_i = tanh(\mathrm{{input\_tensor}}_i))doc"); - detail::bind_unary_operation(module, ttnn::log_sigmoid, R"doc(\mathrm{{output\_tensor}}_i = \verb|log_sigmoid|(\mathrm{{input\_tensor}}_i))doc"); + detail::bind_unary_operation(module, ttnn::log_sigmoid, R"doc(\mathrm{{output\_tensor}}_i = \verb|log_sigmoid|(\mathrm{{input\_tensor}}_i))doc", + R"doc(Supported dtypes, layouts, and ranks: + + +----------------------------+---------------------------------+-------------------+ + | Dtypes | Layouts | Ranks | + +----------------------------+---------------------------------+-------------------+ + | BFLOAT16, BFLOAT8_B | TILE | 2, 3, 4 | + +----------------------------+---------------------------------+-------------------+ + + )doc"); detail::bind_unary_operation(module, ttnn::bitwise_not, R"doc(\mathrm{{output\_tensor}}_i = \verb|bitwise_not|(\mathrm{{input\_tensor}}_i))doc", "Input tensor needs to be in the range [-2147483647, 2147483647], INT32 dtype. Support provided only for Wormhole_B0."); // Unaries with fast_and_approximate_mode @@ -1677,7 +1714,16 @@ void py_module(py::module& module) { detail::bind_unary_composite(module, ttnn::cosh, R"doc(Performs cosh function on :attr:`input_tensor`.)doc", "[supported range -9 to 9]"); detail::bind_unary_composite(module, ttnn::digamma, R"doc(Performs digamma function on :attr:`input_tensor`.)doc", "[supported for value greater than 0]"); detail::bind_unary_composite(module, ttnn::lgamma, R"doc(Performs lgamma function on :attr:`input_tensor`.)doc", "[supported for value greater than 0]"); - detail::bind_unary_composite(module, ttnn::log1p, R"doc(Performs log1p function on :attr:`input_tensor`.)doc", "[supported range -1 to 1]"); + detail::bind_unary_composite(module, ttnn::log1p, R"doc(Performs log1p function on :attr:`input_tensor`.)doc", "[supported range -1 to 1]", + R"doc(Supported dtypes, layouts, and ranks: + + +----------------------------+---------------------------------+-------------------+ + | Dtypes | Layouts | Ranks | + +----------------------------+---------------------------------+-------------------+ + | BFLOAT16 | TILE | 2, 3, 4 | + +----------------------------+---------------------------------+-------------------+ + + )doc"); detail::bind_unary_composite(module, ttnn::mish, R"doc(Performs mish function on :attr:`input_tensor`, not supported for grayskull.)doc"); detail::bind_unary_composite(module, ttnn::multigammaln, R"doc(Performs multigammaln function on :attr:`input_tensor`.)doc", "[supported range 1.6 to inf]"); detail::bind_unary_composite(module, ttnn::sinh, R"doc(Performs sinh function on :attr:`input_tensor`.)doc", "[supported range -88 to 88]");