-
Notifications
You must be signed in to change notification settings - Fork 1
/
SPclipseq.Rmd
134 lines (107 loc) · 3.43 KB
/
SPclipseq.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
title: SPclipseq
author: "Author: FirstName LastName"
date: "Last update: `r format(Sys.time(), '%d %B, %Y')`"
output:
BiocStyle::html_document:
toc_float: true
code_folding: show
BiocStyle::pdf_document: default
package: systemPipeR
vignette: |
%\VignetteIndexEntry{RIBO-Seq Workflow Template}
%\VignetteEncoding{UTF-8}
%\VignetteEngine{knitr::rmarkdown}
fontsize: 14pt
bibliography: bibtex.bib
---
<!--
Config css and r style
-->
```{css, echo=FALSE}
pre code {
white-space: pre !important;
overflow-x: scroll !important;
word-break: keep-all !important;
word-wrap: initial !important;
}
```
```{r style, echo = FALSE, results = 'asis'}
BiocStyle::markdown()
options(width=60, max.print=1000)
knitr::opts_chunk$set(
eval=as.logical(Sys.getenv("KNITR_EVAL", "TRUE")),
cache=as.logical(Sys.getenv("KNITR_CACHE", "TRUE")),
tidy.opts=list(width.cutoff=60), tidy=TRUE)
```
```{r setup, echo=FALSE, message=FALSE, warning=FALSE, eval=FALSE}
suppressPackageStartupMessages({
library(systemPipeR)
})
```
# Workflow environment
_`systemPipeR`_ workflows can be designed and built from start to finish with a
single command, importing from an R Markdown file or stepwise in interactive
mode from the R console.
This tutorial will demonstrate how to build the workflow in an interactive mode,
appending each step. The workflow is constructed by connecting each step via
`appendStep` method. Each `SYSargsList` instance contains instructions needed
for processing a set of input files with a specific command-line or R software
and the paths to the corresponding outfiles generated by a particular tool/step.
To create a Workflow within _`systemPipeR`_, we can start by defining an empty
container and checking the directory structure:
```{r create_workflow, message=FALSE, eval=FALSE}
library(systemPipeR)
sal <- SPRproject()
sal
```
## Load packages
This is an empty template that contains only one demo step.
Refer to our [website](https://systempipe.org/sp/spr/spr_run/) for how to
add more steps. If you prefer a more enriched template,
[read this page](https://systempipe.org/sp/spr/templates/) for other
pre-configured templates.
```{r load_systempiper, eval=TRUE, spr=TRUE}
appendStep(sal) <- LineWise(
code = {
library(systemPipeR)
},
step_name = "load_SPR"
)
```
## Version Information
```{r sessionInfo, eval=FALSE, spr=TRUE}
appendStep(sal) <- LineWise(
code = {
sessionInfo()
},
step_name = "sessionInfo",
dependency = "load_SPR")
```
# Running workflow
## Interactive job submissions in a single machine
For running the workflow, `runWF` function will execute all the steps store in
the workflow container. The execution will be on a single machine without
submitting to a queuing system of a computer cluster.
```{r runWF, eval=FALSE}
sal <- runWF(sal)
```
## Visualize workflow
_`systemPipeR`_ workflows instances can be visualized with the `plotWF` function.
```{r plotWF, eval=FALSE}
plotWF(sal, rstudio = TRUE)
```
## Checking workflow status
To check the summary of the workflow, we can use:
```{r statusWF, eval=FALSE}
sal
statusWF(sal)
```
## Accessing logs report
_`systemPipeR`_ compiles all the workflow execution logs in one central location,
making it easier to check any standard output (`stdout`) or standard error
(`stderr`) for any command-line tools used on the workflow or the R code stdout.
```{r logsWF, eval=FALSE}
sal <- renderLogs(sal)
```
# References