This document describes how to plot estimates as forest plots (or dot
whisker plots) of various regression models, using the
plot_model()
function. plot_model()
is a
diff --git a/articles/plot_model_estimates_files/figure-html/unnamed-chunk-14-1.png b/articles/plot_model_estimates_files/figure-html/unnamed-chunk-14-1.png
index b2093277..6eae202f 100644
Binary files a/articles/plot_model_estimates_files/figure-html/unnamed-chunk-14-1.png and b/articles/plot_model_estimates_files/figure-html/unnamed-chunk-14-1.png differ
diff --git a/articles/sjtitemanalysis.html b/articles/sjtitemanalysis.html
index 6063b431..e7ebb1db 100644
--- a/articles/sjtitemanalysis.html
+++ b/articles/sjtitemanalysis.html
@@ -15,9 +15,9 @@
-
-
-
+
+
+
@@ -36,7 +36,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
-
+
# load required packages
library(sjPlot)
library(brms)
@@ -175,7 +176,7 @@ Bayesian models summaries as HT
the use of Highest Density Intervals instead of confidence
intervals, the Bayes-R-squared values, and a different “point estimate”
(which is, by default, the median from the posterior draws).
-
+
@@ -294,7 +295,7 @@ Bayesian models summaries as HT
σ2
-5.46
+5.58
|
@@ -302,7 +303,7 @@ Bayesian models summaries as HT
τ00
-33.82
+33.42
|
@@ -345,7 +346,7 @@
@@ -450,7 +451,7 @@ Multivariate response models
-56.60
+55.81
@@ -458,7 +459,7 @@ Multivariate response models
-4.62
+3.54
@@ -491,7 +492,7 @@
To show a second CI-column, use show.ci50 = TRUE
.
-
+
@@ -624,7 +625,7 @@ Show two Credible Interval-column2
-56.69
+55.02
|
@@ -632,7 +633,7 @@ Show two Credible Interval-column00
-4.48
+4.29
|
@@ -667,7 +668,7 @@ Mixing multivariate
When both multivariate and univariate response models are displayed
in one table, a column Response is added for the multivariate
response model, to indicate the different outcomes.
-
+
@@ -930,10 +931,10 @@ Mixing multivariate
σ2
-5.54
+5.05
|
-55.70
+56.28
|
@@ -941,10 +942,10 @@ Mixing multivariate
τ00
-33.73
+34.04
|
-4.72
+4.46
|
@@ -952,7 +953,7 @@ Mixing multivariate
ICC
-0.14
+0.13
|
0.96
diff --git a/articles/tab_mixed.html b/articles/tab_mixed.html
index 27370558..7a6cae83 100644
--- a/articles/tab_mixed.html
+++ b/articles/tab_mixed.html
@@ -15,9 +15,9 @@
-
-
-
+
+
+
@@ -36,7 +36,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
@@ -116,7 +116,7 @@
Daniel
Lüdecke
- 2024-03-08
+ 2024-03-21
Source: vignettes/tab_mixed.Rmd
tab_mixed.Rmd
diff --git a/articles/tab_model_estimates.html b/articles/tab_model_estimates.html
index 4271367c..8b17529b 100644
--- a/articles/tab_model_estimates.html
+++ b/articles/tab_model_estimates.html
@@ -15,9 +15,9 @@
-
-
-
+
+
+
@@ -36,7 +36,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
@@ -116,7 +116,7 @@
Daniel
Lüdecke
- 2024-03-08
+ 2024-03-21
Source: vignettes/tab_model_estimates.Rmd
tab_model_estimates.Rmd
diff --git a/articles/tab_model_robust.html b/articles/tab_model_robust.html
index c27cac57..ae4f8ca1 100644
--- a/articles/tab_model_robust.html
+++ b/articles/tab_model_robust.html
@@ -15,9 +15,9 @@
-
-
-
+
+
+
@@ -36,7 +36,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/articles/table_css.html b/articles/table_css.html
index 75f5451d..1fe82ed1 100644
--- a/articles/table_css.html
+++ b/articles/table_css.html
@@ -15,9 +15,9 @@
-
-
-
+
+
+
@@ -36,7 +36,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
@@ -116,7 +116,7 @@
Daniel
Lüdecke
- 2024-03-08
+ 2024-03-21
Source: vignettes/table_css.Rmd
table_css.Rmd
diff --git a/authors.html b/authors.html
index e519eb1b..3da3bb08 100644
--- a/authors.html
+++ b/authors.html
@@ -1,5 +1,5 @@
-Authors and Citation • sjPlotAuthors and Citation • sjPlot
@@ -10,7 +10,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
@@ -115,12 +115,12 @@ Citation
Lüdecke D (????).
sjPlot: Data Visualization for Statistics in Social Science.
-R package version 2.8.15, https://CRAN.R-project.org/package=sjPlot.
+R package version 2.8.15.1, https://CRAN.R-project.org/package=sjPlot.
@Manual{,
title = {sjPlot: Data Visualization for Statistics in Social Science},
author = {Daniel Lüdecke},
- note = {R package version 2.8.15},
+ note = {R package version 2.8.15.1},
url = {https://CRAN.R-project.org/package=sjPlot},
}
diff --git a/deps/JetBrains_Mono-0.4.9/font.css b/deps/JetBrains_Mono-0.4.9/font.css
new file mode 100644
index 00000000..3d6d3013
--- /dev/null
+++ b/deps/JetBrains_Mono-0.4.9/font.css
@@ -0,0 +1,54 @@
+/* cyrillic-ext */
+@font-face {
+ font-family: 'JetBrains Mono';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTN1OVgaY.woff2) format('woff2');
+ unicode-range: U+0460-052F, U+1C80-1C88, U+20B4, U+2DE0-2DFF, U+A640-A69F, U+FE2E-FE2F;
+}
+/* cyrillic */
+@font-face {
+ font-family: 'JetBrains Mono';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTPlOVgaY.woff2) format('woff2');
+ unicode-range: U+0301, U+0400-045F, U+0490-0491, U+04B0-04B1, U+2116;
+}
+/* greek */
+@font-face {
+ font-family: 'JetBrains Mono';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOVOVgaY.woff2) format('woff2');
+ unicode-range: U+0370-0377, U+037A-037F, U+0384-038A, U+038C, U+038E-03A1, U+03A3-03FF;
+}
+/* vietnamese */
+@font-face {
+ font-family: 'JetBrains Mono';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNVOVgaY.woff2) format('woff2');
+ unicode-range: U+0102-0103, U+0110-0111, U+0128-0129, U+0168-0169, U+01A0-01A1, U+01AF-01B0, U+0300-0301, U+0303-0304, U+0308-0309, U+0323, U+0329, U+1EA0-1EF9, U+20AB;
+}
+/* latin-ext */
+@font-face {
+ font-family: 'JetBrains Mono';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNFOVgaY.woff2) format('woff2');
+ unicode-range: U+0100-02AF, U+0304, U+0308, U+0329, U+1E00-1E9F, U+1EF2-1EFF, U+2020, U+20A0-20AB, U+20AD-20C0, U+2113, U+2C60-2C7F, U+A720-A7FF;
+}
+/* latin */
+@font-face {
+ font-family: 'JetBrains Mono';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOlOV.woff2) format('woff2');
+ unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+0304, U+0308, U+0329, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD;
+}
diff --git a/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTN1OVgaY.woff2 b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTN1OVgaY.woff2
new file mode 100644
index 00000000..aef48986
Binary files /dev/null and b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTN1OVgaY.woff2 differ
diff --git a/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNFOVgaY.woff2 b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNFOVgaY.woff2
new file mode 100644
index 00000000..095292db
Binary files /dev/null and b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNFOVgaY.woff2 differ
diff --git a/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNVOVgaY.woff2 b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNVOVgaY.woff2
new file mode 100644
index 00000000..11931974
Binary files /dev/null and b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNVOVgaY.woff2 differ
diff --git a/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOVOVgaY.woff2 b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOVOVgaY.woff2
new file mode 100644
index 00000000..ada16a62
Binary files /dev/null and b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOVOVgaY.woff2 differ
diff --git a/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOlOV.woff2 b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOlOV.woff2
new file mode 100644
index 00000000..c3f046fc
Binary files /dev/null and b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOlOV.woff2 differ
diff --git a/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTPlOVgaY.woff2 b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTPlOVgaY.woff2
new file mode 100644
index 00000000..6d1cd6ae
Binary files /dev/null and b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTPlOVgaY.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4WxKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4WxKOzY.woff2
new file mode 100644
index 00000000..fc71d944
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4WxKOzY.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4mxK.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4mxK.woff2
new file mode 100644
index 00000000..020729ef
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4mxK.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu5mxKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu5mxKOzY.woff2
new file mode 100644
index 00000000..47da3629
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu5mxKOzY.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu72xKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu72xKOzY.woff2
new file mode 100644
index 00000000..22ddee9c
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu72xKOzY.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7GxKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7GxKOzY.woff2
new file mode 100644
index 00000000..8a8de615
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7GxKOzY.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7WxKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7WxKOzY.woff2
new file mode 100644
index 00000000..6284d2e3
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7WxKOzY.woff2 differ
diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7mxKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7mxKOzY.woff2
new file mode 100644
index 00000000..72ce0e98
Binary files /dev/null and b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7mxKOzY.woff2 differ
diff --git a/deps/Roboto-0.4.9/font.css b/deps/Roboto-0.4.9/font.css
new file mode 100644
index 00000000..171e30aa
--- /dev/null
+++ b/deps/Roboto-0.4.9/font.css
@@ -0,0 +1,63 @@
+/* cyrillic-ext */
+@font-face {
+ font-family: 'Roboto';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(KFOmCnqEu92Fr1Mu72xKOzY.woff2) format('woff2');
+ unicode-range: U+0460-052F, U+1C80-1C88, U+20B4, U+2DE0-2DFF, U+A640-A69F, U+FE2E-FE2F;
+}
+/* cyrillic */
+@font-face {
+ font-family: 'Roboto';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(KFOmCnqEu92Fr1Mu5mxKOzY.woff2) format('woff2');
+ unicode-range: U+0301, U+0400-045F, U+0490-0491, U+04B0-04B1, U+2116;
+}
+/* greek-ext */
+@font-face {
+ font-family: 'Roboto';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(KFOmCnqEu92Fr1Mu7mxKOzY.woff2) format('woff2');
+ unicode-range: U+1F00-1FFF;
+}
+/* greek */
+@font-face {
+ font-family: 'Roboto';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(KFOmCnqEu92Fr1Mu4WxKOzY.woff2) format('woff2');
+ unicode-range: U+0370-0377, U+037A-037F, U+0384-038A, U+038C, U+038E-03A1, U+03A3-03FF;
+}
+/* vietnamese */
+@font-face {
+ font-family: 'Roboto';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(KFOmCnqEu92Fr1Mu7WxKOzY.woff2) format('woff2');
+ unicode-range: U+0102-0103, U+0110-0111, U+0128-0129, U+0168-0169, U+01A0-01A1, U+01AF-01B0, U+0300-0301, U+0303-0304, U+0308-0309, U+0323, U+0329, U+1EA0-1EF9, U+20AB;
+}
+/* latin-ext */
+@font-face {
+ font-family: 'Roboto';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(KFOmCnqEu92Fr1Mu7GxKOzY.woff2) format('woff2');
+ unicode-range: U+0100-02AF, U+0304, U+0308, U+0329, U+1E00-1E9F, U+1EF2-1EFF, U+2020, U+20A0-20AB, U+20AD-20C0, U+2113, U+2C60-2C7F, U+A720-A7FF;
+}
+/* latin */
+@font-face {
+ font-family: 'Roboto';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(KFOmCnqEu92Fr1Mu4mxK.woff2) format('woff2');
+ unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+0304, U+0308, U+0329, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD;
+}
diff --git a/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmY2RjRdE.woff2 b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmY2RjRdE.woff2
new file mode 100644
index 00000000..ea38a67c
Binary files /dev/null and b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmY2RjRdE.woff2 differ
diff --git a/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYGRjRdE.woff2 b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYGRjRdE.woff2
new file mode 100644
index 00000000..85bd24bf
Binary files /dev/null and b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYGRjRdE.woff2 differ
diff --git a/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYWRjRdE.woff2 b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYWRjRdE.woff2
new file mode 100644
index 00000000..c6a263fa
Binary files /dev/null and b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYWRjRdE.woff2 differ
diff --git a/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYmRjRdE.woff2 b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYmRjRdE.woff2
new file mode 100644
index 00000000..89947108
Binary files /dev/null and b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYmRjRdE.woff2 differ
diff --git a/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISma2RjRdE.woff2 b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISma2RjRdE.woff2
new file mode 100644
index 00000000..285676da
Binary files /dev/null and b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISma2RjRdE.woff2 differ
diff --git a/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmb2Rj.woff2 b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmb2Rj.woff2
new file mode 100644
index 00000000..d6c2b90c
Binary files /dev/null and b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmb2Rj.woff2 differ
diff --git a/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmbGRjRdE.woff2 b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmbGRjRdE.woff2
new file mode 100644
index 00000000..be863556
Binary files /dev/null and b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmbGRjRdE.woff2 differ
diff --git a/deps/Roboto_Slab-0.4.9/font.css b/deps/Roboto_Slab-0.4.9/font.css
new file mode 100644
index 00000000..3d2dfffa
--- /dev/null
+++ b/deps/Roboto_Slab-0.4.9/font.css
@@ -0,0 +1,63 @@
+/* cyrillic-ext */
+@font-face {
+ font-family: 'Roboto Slab';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYmRjRdE.woff2) format('woff2');
+ unicode-range: U+0460-052F, U+1C80-1C88, U+20B4, U+2DE0-2DFF, U+A640-A69F, U+FE2E-FE2F;
+}
+/* cyrillic */
+@font-face {
+ font-family: 'Roboto Slab';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISma2RjRdE.woff2) format('woff2');
+ unicode-range: U+0301, U+0400-045F, U+0490-0491, U+04B0-04B1, U+2116;
+}
+/* greek-ext */
+@font-face {
+ font-family: 'Roboto Slab';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmY2RjRdE.woff2) format('woff2');
+ unicode-range: U+1F00-1FFF;
+}
+/* greek */
+@font-face {
+ font-family: 'Roboto Slab';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmbGRjRdE.woff2) format('woff2');
+ unicode-range: U+0370-0377, U+037A-037F, U+0384-038A, U+038C, U+038E-03A1, U+03A3-03FF;
+}
+/* vietnamese */
+@font-face {
+ font-family: 'Roboto Slab';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYGRjRdE.woff2) format('woff2');
+ unicode-range: U+0102-0103, U+0110-0111, U+0128-0129, U+0168-0169, U+01A0-01A1, U+01AF-01B0, U+0300-0301, U+0303-0304, U+0308-0309, U+0323, U+0329, U+1EA0-1EF9, U+20AB;
+}
+/* latin-ext */
+@font-face {
+ font-family: 'Roboto Slab';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYWRjRdE.woff2) format('woff2');
+ unicode-range: U+0100-02AF, U+0304, U+0308, U+0329, U+1E00-1E9F, U+1EF2-1EFF, U+2020, U+20A0-20AB, U+20AD-20C0, U+2113, U+2C60-2C7F, U+A720-A7FF;
+}
+/* latin */
+@font-face {
+ font-family: 'Roboto Slab';
+ font-style: normal;
+ font-weight: 400;
+ font-display: swap;
+ src: url(BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmb2Rj.woff2) format('woff2');
+ unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+0304, U+0308, U+0329, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD;
+}
diff --git a/deps/data-deps.txt b/deps/data-deps.txt
index c058bfcd..441aba50 100644
--- a/deps/data-deps.txt
+++ b/deps/data-deps.txt
@@ -2,6 +2,6 @@
-
-
-
+
+
+
diff --git a/favicon-16x16.png b/favicon-16x16.png
index d72de9bb..4925c4d6 100644
Binary files a/favicon-16x16.png and b/favicon-16x16.png differ
diff --git a/favicon-32x32.png b/favicon-32x32.png
index 15c2f96a..506734e6 100644
Binary files a/favicon-32x32.png and b/favicon-32x32.png differ
diff --git a/index.html b/index.html
index 212218cb..836bbb86 100644
--- a/index.html
+++ b/index.html
@@ -22,9 +22,9 @@
-
-
-
+
+
+
@@ -50,7 +50,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/news/index.html b/news/index.html
index d21c1a2a..84f7aff4 100644
--- a/news/index.html
+++ b/news/index.html
@@ -1,5 +1,5 @@
-Changelog • sjPlotChangelog • sjPlot
@@ -10,7 +10,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/pkgdown.yml b/pkgdown.yml
index 16427efa..f38e6fb4 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -14,7 +14,7 @@ articles:
tab_model_estimates: tab_model_estimates.html
tab_model_robust: tab_model_robust.html
table_css: table_css.html
-last_built: 2024-03-08T13:18Z
+last_built: 2024-03-21T15:39Z
urls:
reference: https://strengejacke.github.io/sjPlot/reference
article: https://strengejacke.github.io/sjPlot/articles
diff --git a/reference/Rplot002.png b/reference/Rplot002.png
index b13762f0..e207330a 100644
Binary files a/reference/Rplot002.png and b/reference/Rplot002.png differ
diff --git a/reference/Rplot003.png b/reference/Rplot003.png
index f6e9aec6..3342954a 100644
Binary files a/reference/Rplot003.png and b/reference/Rplot003.png differ
diff --git a/reference/Rplot004.png b/reference/Rplot004.png
index 8dbf94ab..98a1c19d 100644
Binary files a/reference/Rplot004.png and b/reference/Rplot004.png differ
diff --git a/reference/Rplot005.png b/reference/Rplot005.png
index 273b475e..64d75369 100644
Binary files a/reference/Rplot005.png and b/reference/Rplot005.png differ
diff --git a/reference/Rplot006.png b/reference/Rplot006.png
index ebdb0a01..cd6fab07 100644
Binary files a/reference/Rplot006.png and b/reference/Rplot006.png differ
diff --git a/reference/Rplot007.png b/reference/Rplot007.png
index d4d8fb5d..c74ad550 100644
Binary files a/reference/Rplot007.png and b/reference/Rplot007.png differ
diff --git a/reference/Rplot008.png b/reference/Rplot008.png
index 42ba437c..463896b3 100644
Binary files a/reference/Rplot008.png and b/reference/Rplot008.png differ
diff --git a/reference/Rplot009.png b/reference/Rplot009.png
index 408e16f8..ed46dec8 100644
Binary files a/reference/Rplot009.png and b/reference/Rplot009.png differ
diff --git a/reference/dist_chisq-1.png b/reference/dist_chisq-1.png
index 8fca0cad..0f856275 100644
Binary files a/reference/dist_chisq-1.png and b/reference/dist_chisq-1.png differ
diff --git a/reference/dist_chisq-2.png b/reference/dist_chisq-2.png
index bf66bb5a..9036bd70 100644
Binary files a/reference/dist_chisq-2.png and b/reference/dist_chisq-2.png differ
diff --git a/reference/dist_chisq-3.png b/reference/dist_chisq-3.png
index af947981..026ad74c 100644
Binary files a/reference/dist_chisq-3.png and b/reference/dist_chisq-3.png differ
diff --git a/reference/dist_chisq.html b/reference/dist_chisq.html
index 29642640..5c06cdb8 100644
--- a/reference/dist_chisq.html
+++ b/reference/dist_chisq.html
@@ -1,7 +1,7 @@
Plot chi-squared distributions — dist_chisq • sjPlotPlot chi-squared distributions — dist_chisq • sjPlotPlot F distributions — dist_f • sjPlotPlot F distributions — dist_f • sjPlotPlot normal distributions — dist_norm • sjPlotPlot normal distributions — dist_norm • sjPlotPlot t-distributions — dist_t • sjPlotPlot t-distributions — dist_t • sjPlotSample dataset from the EUROFAMCARE project — efc • sjPlotSample dataset from the EUROFAMCARE project — efc • sjPlot
@@ -10,7 +10,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/index.html b/reference/index.html
index ac46b8ee..94a84815 100644
--- a/reference/index.html
+++ b/reference/index.html
@@ -1,5 +1,5 @@
-Function reference • sjPlotFunction reference • sjPlot
@@ -10,7 +10,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/plot_frq-1.png b/reference/plot_frq-1.png
index 2c1e6de5..8dd68e05 100644
Binary files a/reference/plot_frq-1.png and b/reference/plot_frq-1.png differ
diff --git a/reference/plot_frq-2.png b/reference/plot_frq-2.png
index 0f8d5fc9..94c58d9a 100644
Binary files a/reference/plot_frq-2.png and b/reference/plot_frq-2.png differ
diff --git a/reference/plot_frq-3.png b/reference/plot_frq-3.png
index 186ae6aa..adf0d86f 100644
Binary files a/reference/plot_frq-3.png and b/reference/plot_frq-3.png differ
diff --git a/reference/plot_frq-4.png b/reference/plot_frq-4.png
index 677c6b96..3b979541 100644
Binary files a/reference/plot_frq-4.png and b/reference/plot_frq-4.png differ
diff --git a/reference/plot_frq-5.png b/reference/plot_frq-5.png
index 48342593..3c63d871 100644
Binary files a/reference/plot_frq-5.png and b/reference/plot_frq-5.png differ
diff --git a/reference/plot_frq-6.png b/reference/plot_frq-6.png
index adbf22f3..844102a8 100644
Binary files a/reference/plot_frq-6.png and b/reference/plot_frq-6.png differ
diff --git a/reference/plot_frq-7.png b/reference/plot_frq-7.png
index 75bc56e6..479d6a3e 100644
Binary files a/reference/plot_frq-7.png and b/reference/plot_frq-7.png differ
diff --git a/reference/plot_frq-8.png b/reference/plot_frq-8.png
index c0a99fef..c4b61249 100644
Binary files a/reference/plot_frq-8.png and b/reference/plot_frq-8.png differ
diff --git a/reference/plot_frq-9.png b/reference/plot_frq-9.png
index b92778cb..4d3aac41 100644
Binary files a/reference/plot_frq-9.png and b/reference/plot_frq-9.png differ
diff --git a/reference/plot_frq.html b/reference/plot_frq.html
index dfb7712d..2b094a78 100644
--- a/reference/plot_frq.html
+++ b/reference/plot_frq.html
@@ -1,5 +1,5 @@
-Plot frequencies of variables — plot_frq • sjPlotPlot frequencies of variables — plot_frq • sjPlot
@@ -10,7 +10,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/plot_gpt-1.png b/reference/plot_gpt-1.png
index fa4e68cd..f520d125 100644
Binary files a/reference/plot_gpt-1.png and b/reference/plot_gpt-1.png differ
diff --git a/reference/plot_gpt.html b/reference/plot_gpt.html
index 65b64053..071495cb 100644
--- a/reference/plot_gpt.html
+++ b/reference/plot_gpt.html
@@ -1,7 +1,7 @@
Plot grouped proportional tables — plot_gpt • sjPlotPlot grouped proportional tables — plot_gpt • sjPlotArrange list of plots as grid — plot_grid • sjPlotArrange list of plots as grid — plot_grid • sjPlot
@@ -10,7 +10,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/plot_grpfrq-1.png b/reference/plot_grpfrq-1.png
index de18265e..49d9820f 100644
Binary files a/reference/plot_grpfrq-1.png and b/reference/plot_grpfrq-1.png differ
diff --git a/reference/plot_grpfrq-2.png b/reference/plot_grpfrq-2.png
index a50be83e..27ce81d0 100644
Binary files a/reference/plot_grpfrq-2.png and b/reference/plot_grpfrq-2.png differ
diff --git a/reference/plot_grpfrq-3.png b/reference/plot_grpfrq-3.png
index 0aae0d72..fc561a41 100644
Binary files a/reference/plot_grpfrq-3.png and b/reference/plot_grpfrq-3.png differ
diff --git a/reference/plot_grpfrq-4.png b/reference/plot_grpfrq-4.png
index 4010c7f0..482b2221 100644
Binary files a/reference/plot_grpfrq-4.png and b/reference/plot_grpfrq-4.png differ
diff --git a/reference/plot_grpfrq-5.png b/reference/plot_grpfrq-5.png
index 46f51433..b588d821 100644
Binary files a/reference/plot_grpfrq-5.png and b/reference/plot_grpfrq-5.png differ
diff --git a/reference/plot_grpfrq-6.png b/reference/plot_grpfrq-6.png
index 1a471829..f8b92967 100644
Binary files a/reference/plot_grpfrq-6.png and b/reference/plot_grpfrq-6.png differ
diff --git a/reference/plot_grpfrq-7.png b/reference/plot_grpfrq-7.png
index be419c3c..02c88b6c 100644
Binary files a/reference/plot_grpfrq-7.png and b/reference/plot_grpfrq-7.png differ
diff --git a/reference/plot_grpfrq-8.png b/reference/plot_grpfrq-8.png
index 77e69069..def334b6 100644
Binary files a/reference/plot_grpfrq-8.png and b/reference/plot_grpfrq-8.png differ
diff --git a/reference/plot_grpfrq.html b/reference/plot_grpfrq.html
index bdc0ed93..d9c881ce 100644
--- a/reference/plot_grpfrq.html
+++ b/reference/plot_grpfrq.html
@@ -1,6 +1,6 @@
Plot grouped or stacked frequencies — plot_grpfrq • sjPlotPlot grouped or stacked frequencies — plot_grpfrq • sjPlotPlot model fit from k-fold cross-validation — plot_kfold_cv • sjPlotPlot model fit from k-fold cross-validation — plot_kfold_cv • sjPlotPlot likert scales as centered stacked bars — plot_likert • sjPlotPlot likert scales as centered stacked bars — plot_likert • sjPlot
@@ -10,7 +10,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/plot_model.html b/reference/plot_model.html
index 18af42f5..861d34aa 100644
--- a/reference/plot_model.html
+++ b/reference/plot_model.html
@@ -1,6 +1,6 @@
Plot regression models — plot_model • sjPlotPlot regression models — plot_model • sjPlotForest plot of multiple regression models — plot_models • sjPlotForest plot of multiple regression models — plot_models • sjPlotPlot predicted values and their residuals — plot_residuals • sjPlotsjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/plot_scatter-1.png b/reference/plot_scatter-1.png
index ecb979a3..2aa7c2a9 100644
Binary files a/reference/plot_scatter-1.png and b/reference/plot_scatter-1.png differ
diff --git a/reference/plot_scatter-2.png b/reference/plot_scatter-2.png
index 6c2c83f6..daff4c7a 100644
Binary files a/reference/plot_scatter-2.png and b/reference/plot_scatter-2.png differ
diff --git a/reference/plot_scatter-3.png b/reference/plot_scatter-3.png
index 6d0b2d09..6523fa47 100644
Binary files a/reference/plot_scatter-3.png and b/reference/plot_scatter-3.png differ
diff --git a/reference/plot_scatter-4.png b/reference/plot_scatter-4.png
index 2e6c6a3a..9108204f 100644
Binary files a/reference/plot_scatter-4.png and b/reference/plot_scatter-4.png differ
diff --git a/reference/plot_scatter-5.png b/reference/plot_scatter-5.png
index 7e963a8f..00338356 100644
Binary files a/reference/plot_scatter-5.png and b/reference/plot_scatter-5.png differ
diff --git a/reference/plot_scatter.html b/reference/plot_scatter.html
index b6f64312..c95901a6 100644
--- a/reference/plot_scatter.html
+++ b/reference/plot_scatter.html
@@ -1,7 +1,7 @@
Plot (grouped) scatter plots — plot_scatter • sjPlotPlot (grouped) scatter plots — plot_scatter • sjPlotPlot stacked proportional bars — plot_stackfrq • sjPlotPlot stacked proportional bars — plot_stackfrq • sjPlotPlot contingency tables — plot_xtab • sjPlotPlot contingency tables — plot_xtab • sjPlot
@@ -10,7 +10,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/save_plot.html b/reference/save_plot.html
index df01d115..68b0bb08 100644
--- a/reference/save_plot.html
+++ b/reference/save_plot.html
@@ -1,6 +1,6 @@
Save ggplot-figure for print publication — save_plot • sjPlotSave ggplot-figure for print publication — save_plot • sjPlotSet global theme options for sjp-functions — set_theme • sjPlotSet global theme options for sjp-functions — set_theme • sjPlot
@@ -10,7 +10,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/sjPlot-package.html b/reference/sjPlot-package.html
index 8f70ac02..ede29231 100644
--- a/reference/sjPlot-package.html
+++ b/reference/sjPlot-package.html
@@ -16,7 +16,7 @@
sjp - plotting functions
sjt - (HTML) table output functions
-">Data Visualization for Statistics in Social Science — sjPlot-package • sjPlotData Visualization for Statistics in Social Science — sjPlot-package • sjPlotsjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/sjPlot-themes.html b/reference/sjPlot-themes.html
index 2a53be62..3fce0a7d 100644
--- a/reference/sjPlot-themes.html
+++ b/reference/sjPlot-themes.html
@@ -1,6 +1,6 @@
Modify plot appearance — sjPlot-themes • sjPlotModify plot appearance — sjPlot-themes • sjPlotPlot One-Way-Anova tables — sjp.aov1 • sjPlotPlot One-Way-Anova tables — sjp.aov1 • sjPlotPlot Pearson's Chi2-Test of multiple contingency tables — sjp.chi2 • sjPlotPlot Pearson's Chi2-Test of multiple contingency tables — sjp.chi2 • sjPlotPlot correlation matrix — sjp.corr • sjPlotPlot correlation matrix — sjp.corr • sjPlot
@@ -10,7 +10,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/sjp.poly-1.png b/reference/sjp.poly-1.png
index b2d75141..eef66ab8 100644
Binary files a/reference/sjp.poly-1.png and b/reference/sjp.poly-1.png differ
diff --git a/reference/sjp.poly-2.png b/reference/sjp.poly-2.png
index 8c6fa527..5128821a 100644
Binary files a/reference/sjp.poly-2.png and b/reference/sjp.poly-2.png differ
diff --git a/reference/sjp.poly-3.png b/reference/sjp.poly-3.png
index 0f554978..8b67937d 100644
Binary files a/reference/sjp.poly-3.png and b/reference/sjp.poly-3.png differ
diff --git a/reference/sjp.poly-4.png b/reference/sjp.poly-4.png
index 1737446a..756c70c0 100644
Binary files a/reference/sjp.poly-4.png and b/reference/sjp.poly-4.png differ
diff --git a/reference/sjp.poly-5.png b/reference/sjp.poly-5.png
index 07d3ce6a..6044541f 100644
Binary files a/reference/sjp.poly-5.png and b/reference/sjp.poly-5.png differ
diff --git a/reference/sjp.poly.html b/reference/sjp.poly.html
index be00c6da..188058d4 100644
--- a/reference/sjp.poly.html
+++ b/reference/sjp.poly.html
@@ -3,7 +3,7 @@
against a response variable x and adds - depending on
the amount of numeric values in poly.degree - multiple
polynomial curves. A loess-smoothed line can be added to see
- which of the polynomial curves fits best to the data.">Plot polynomials for (generalized) linear regression — sjp.poly • sjPlotPlot polynomials for (generalized) linear regression — sjp.poly • sjPlotsjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/sjplot.html b/reference/sjplot.html
index 9d3a625c..03f0f75e 100644
--- a/reference/sjplot.html
+++ b/reference/sjplot.html
@@ -4,7 +4,7 @@
should be plotted or printed as table. The function then transforms
the input and calls the requested sjp.- resp. sjt.-function
to create a plot or table.
- Both sjplot() and sjtab() support grouped data frames.">Wrapper to create plots and tables within a pipe-workflow — sjplot • sjPlotWrapper to create plots and tables within a pipe-workflow — sjplot • sjPlotsjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/tab_corr.html b/reference/tab_corr.html
index 86fe431e..bd959503 100644
--- a/reference/tab_corr.html
+++ b/reference/tab_corr.html
@@ -1,7 +1,7 @@
Summary of correlations as HTML table — tab_corr • sjPlotSummary of correlations as HTML table — tab_corr • sjPlotPrint data frames as HTML table. — tab_df • sjPlotPrint data frames as HTML table. — tab_df • sjPlotSummary of factor analysis as HTML table — tab_fa • sjPlotsjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/tab_itemscale.html b/reference/tab_itemscale.html
index c9e5de32..6bcc7ea2 100644
--- a/reference/tab_itemscale.html
+++ b/reference/tab_itemscale.html
@@ -17,7 +17,7 @@
If factor.groups is not NULL, the data frame df will be
splitted into groups, assuming that factor.groups indicate those columns
of the data frame that belong to a certain factor (see return value of function tab_pca
- as example for retrieving factor groups for a scale and see examples for more details).">Summary of item analysis of an item scale as HTML table — tab_itemscale • sjPlotSummary of item analysis of an item scale as HTML table — tab_itemscale • sjPlotsjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/tab_model.html b/reference/tab_model.html
index cffaadc1..d6c2f077 100644
--- a/reference/tab_model.html
+++ b/reference/tab_model.html
@@ -1,5 +1,5 @@
-Print regression models as HTML table — tab_model • sjPlotPrint regression models as HTML table — tab_model • sjPlot
@@ -10,7 +10,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/tab_pca.html b/reference/tab_pca.html
index 02208447..6b34a5c7 100644
--- a/reference/tab_pca.html
+++ b/reference/tab_pca.html
@@ -4,7 +4,7 @@
table, or saves them as file. In case a data frame is used as
parameter, the Cronbach's Alpha value for each factor scale will be calculated,
i.e. all variables with the highest loading for a factor are taken for the
- reliability test. The result is an alpha value for each factor dimension.">Summary of principal component analysis as HTML table — tab_pca • sjPlotSummary of principal component analysis as HTML table — tab_pca • sjPlotsjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/tab_stackfrq.html b/reference/tab_stackfrq.html
index 082a0031..904aa2dd 100644
--- a/reference/tab_stackfrq.html
+++ b/reference/tab_stackfrq.html
@@ -2,7 +2,7 @@
Summary of stacked frequencies as HTML table — tab_stackfrq • sjPlotSummary of stacked frequencies as HTML table — tab_stackfrq • sjPlotSummary of contingency tables as HTML table — tab_xtab • sjPlotSummary of contingency tables as HTML table — tab_xtab • sjPlot
@@ -10,7 +10,7 @@
sjPlot
- 2.8.15
+ 2.8.15.1
diff --git a/reference/view_df.html b/reference/view_df.html
index 2440fa6b..8dac624a 100644
--- a/reference/view_df.html
+++ b/reference/view_df.html
@@ -3,7 +3,7 @@
or any similar labelled data.frame, as HTML table.
This quick overview shows variable ID number, name, label,
type and associated value labels. The result can be
- considered as "codeplan" of the data frame.'>View structure of labelled data frames — view_df • sjPlotView structure of labelled data frames — view_df • sjPlot #> (Dispersion parameter for binomial family taken to be 1) #> #> Null deviance: 1122.16 on 814 degrees of freedom #> Residual deviance: 939.77 on 807 degrees of freedom #> (93 observations deleted due to missingness) #> AIC: 955.77 #> #> Number of Fisher Scoring iterations: 4 plot_model(m1, order.terms = c(6, 7, 1, 2, 3, 4, 5))"},{"path":"https://strengejacke.github.io/sjPlot/articles/plot_model_estimates.html","id":"estimates-on-the-untransformed-scale","dir":"Articles","previous_headings":"","what":"Estimates on the untransformed scale","title":"Plotting Estimates (Fixed Effects) of Regression Models","text":"default, plot_model() automatically exponentiates coefficients, appropriate (e.g. models log logit link). can explicitley prevent transformation setting transform-argument NULL, apply transformation using character vector function name.","code":"plot_model(m1, transform = NULL) plot_model(m1, transform = \"plogis\")"},{"path":"https://strengejacke.github.io/sjPlot/articles/plot_model_estimates.html","id":"showing-value-labels","dir":"Articles","previous_headings":"","what":"Showing value labels","title":"Plotting Estimates (Fixed Effects) of Regression Models","text":"default, just dots error bars plotted. Use show.values = TRUE show value labels estimates values, use show.p = FALSE suppress asterisks indicate significance level p-values. Use value.offset adjust relative positioning value labels dots lines.","code":"plot_model(m1, show.values = TRUE, value.offset = .3)"},{"path":"https://strengejacke.github.io/sjPlot/articles/plot_model_estimates.html","id":"labelling-the-plot","dir":"Articles","previous_headings":"","what":"Labelling the plot","title":"Plotting Estimates (Fixed Effects) of Regression Models","text":"seen examples, default, plotting-functions sjPlot retrieve value variable labels data labelled, using sjlabelled-package. data labelled, variable names used. cases, use arguments title, axis.labels axis.title annotate plot title axes. want variable names instead labels, even labelled data, use \"\" argument-value, e.g. axis.labels = \"\", set auto.label FALSE. Furthermore, plot_model() applies case-conversion labels default, using snakecase-package. converts labels human-readable versions. Use case = NULL turn case-conversion , refer package-vignette snakecase-package options.","code":"data(iris) m2 <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Species, data = iris) # variable names as labels, but made \"human readable\" # separating dots are removed plot_model(m2) # to use variable names even for labelled data plot_model(m1, axis.labels = \"\", title = \"my own title\")"},{"path":"https://strengejacke.github.io/sjPlot/articles/plot_model_estimates.html","id":"pick-or-remove-specific-terms-from-plot","dir":"Articles","previous_headings":"","what":"Pick or remove specific terms from plot","title":"Plotting Estimates (Fixed Effects) of Regression Models","text":"Use terms resp. rm.terms select specific terms () plotted.","code":"# keep only coefficients sex2, dep2 and dep3 plot_model(m1, terms = c(\"sex2\", \"dep2\", \"dep3\")) # remove coefficients sex2, dep2 and dep3 plot_model(m1, rm.terms = c(\"sex2\", \"dep2\", \"dep3\"))"},{"path":"https://strengejacke.github.io/sjPlot/articles/plot_model_estimates.html","id":"standardized-estimates","dir":"Articles","previous_headings":"","what":"Standardized estimates","title":"Plotting Estimates (Fixed Effects) of Regression Models","text":"linear models, can also plot standardized beta coefficients, using type = \"std\" type = \"std2\". two options differ way coefficients standardized. type = \"std2\" plots standardized beta values, however, standardization follows Gelman’s (2008) suggestion, rescaling estimates dividing two standard deviations instead just one.","code":"plot_model(m2, type = \"std\")"},{"path":"https://strengejacke.github.io/sjPlot/articles/plot_model_estimates.html","id":"bayesian-models-fitted-with-stan","dir":"Articles","previous_headings":"","what":"Bayesian models (fitted with Stan)","title":"Plotting Estimates (Fixed Effects) of Regression Models","text":"plot_model() also supports stan-models fitted rstanarm brms packages. However, differences compared previous plot examples. First, course, confidence intervals, uncertainty intervals - high density intervals, precise. Second, ’s just one interval range, inner outer probability. default, inner probability fixed .5 (50%), outer probability specified via ci.lvl (defaults .89 (89%) Bayesian models). However, can also use arguments prob.inner prob.outer define intervals boundaries. Third, point estimate default median, can also another value, like mean. can specified bpe-argument.","code":"if (require(\"rstanarm\", quietly = TRUE)) { # make sure we apply a nice theme library(ggplot2) theme_set(theme_sjplot()) data(mtcars) m <- stan_glm(mpg ~ wt + am + cyl + gear, data = mtcars, chains = 1) # default model plot_model(m) # same model, with mean point estimate, dot-style for point estimate # and different inner/outer probabilities of the HDI plot_model( m, bpe = \"mean\", bpe.style = \"dot\", prob.inner = .4, prob.outer = .8 ) }"},{"path":"https://strengejacke.github.io/sjPlot/articles/plot_model_estimates.html","id":"tweaking-plot-appearance","dir":"Articles","previous_headings":"","what":"Tweaking plot appearance","title":"Plotting Estimates (Fixed Effects) of Regression Models","text":"several options customize plot appearance: colors-argument either takes name valid colorbrewer palette (see also related vignette), \"bw\" \"gs\" black/white greyscaled colors, string color name. value.offset value.size adjust positioning size value labels, shown. dot.size line.size change size dots error bars. vline.color changes neutral “intercept” line. width, alpha scale passed certain ggplot-geoms, like geom_errorbar() geom_density_ridges().","code":"plot_model( m1, colors = \"Accent\", show.values = TRUE, value.offset = .4, value.size = 4, dot.size = 3, line.size = 1.5, vline.color = \"blue\", width = 1.5 )"},{"path":"https://strengejacke.github.io/sjPlot/articles/plot_model_estimates.html","id":"references","dir":"Articles","previous_headings":"","what":"References","title":"Plotting Estimates (Fixed Effects) of Regression Models","text":"Gelman (2008) Scaling regression inputs dividing two standard deviations. Statistics Medicine 27: 2865–2873.","code":""},{"path":"https://strengejacke.github.io/sjPlot/articles/sjtitemanalysis.html","id":"performing-an-item-analysis-of-a-scale-or-index","dir":"Articles","previous_headings":"","what":"Performing an item analysis of a scale or index","title":"Item Analysis of a Scale or an Index","text":"function performs item analysis certain statistics useful scale index development. Following statistics computed variable (column) data frame: percentage missing values mean value standard deviation skew item difficulty item discrimination Cronbach’s Alpha item removed scale mean (average) inter-item-correlation Optional, following statistics can computed well: kurstosis Shapiro-Wilk Normality Test argument factor.groups NULL, data frame df splitted groups, assuming factor.groups indicate columns (variables) data frame belong certain factor (see, instance, return value function tab_pca() parameters::principal_components() example retrieving factor groups scale). useful perfomed principal component analysis factor analysis first step, now want see whether found factors / components represent scale index score. demonstrate function, first need data:","code":""},{"path":"https://strengejacke.github.io/sjPlot/articles/sjtitemanalysis.html","id":"index-score-with-one-component","dir":"Articles","previous_headings":"","what":"Index score with one component","title":"Item Analysis of a Scale or an Index","text":"simplest function call just passing data frame argument. case, function assumes variables data frame belong one factor . Component 1 interprete output, may consider following values rule--thumbs indicating reliable scale: item difficulty range 0.2 0.8. Ideal value p+(1-p)/2 (mostly 0.5 0.8) item discrimination, acceptable values 0.2 higher; closer 1 better case total Cronbach’s Alpha value acceptable cut-0.7 (mostly index items), mean inter-item-correlation alternative measure indicate acceptability; satisfactory range lies 0.2 0.4","code":"tab_itemscale(mydf)"},{"path":"https://strengejacke.github.io/sjPlot/articles/sjtitemanalysis.html","id":"index-score-with-more-than-one-component","dir":"Articles","previous_headings":"","what":"Index score with more than one component","title":"Item Analysis of a Scale or an Index","text":"items COPE index used example represent single factor. can check , instance, principle component analysis. know, variable belongs factor (.e. variable part component), can pass numeric vector group indices argument factor.groups. case, data frame divided components specified factor.groups, component (factor) analysed. PCA extracted two components. Now tab_itemscale() … performs item analysis components, showing whether reliable useful scale index score builds index component, standardizing scale adds component-correlation-matrix, see whether index scores (based components) highly correlated . Component 1 Component 2 ","code":"library(parameters) # Compute PCA on Cope-Index, and retrieve # factor indices for each COPE index variable pca <- parameters::principal_components(mydf) factor.groups <- parameters::closest_component(pca) tab_itemscale(mydf, factor.groups) #> Warning: Data frame needs at least three columns for reliability-test."},{"path":"https://strengejacke.github.io/sjPlot/articles/sjtitemanalysis.html","id":"adding-further-statistics","dir":"Articles","previous_headings":"","what":"Adding further statistics","title":"Item Analysis of a Scale or an Index","text":"Component 1 Component 2 ","code":"tab_itemscale(mydf, factor.groups, show.shapiro = TRUE, show.kurtosis = TRUE) #> Warning: Data frame needs at least three columns for reliability-test."},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_bayes.html","id":"bayesian-models-summaries-as-html-table","dir":"Articles","previous_headings":"","what":"Bayesian models summaries as HTML table","title":"Summary of Bayesian Models as HTML Table","text":"Bayesian regression models, differences table output simple models mixed models tab_models() use Highest Density Intervals instead confidence intervals, Bayes-R-squared values, different “point estimate” (, default, median posterior draws).","code":"tab_model(m1)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_bayes.html","id":"multivariate-response-models","dir":"Articles","previous_headings":"","what":"Multivariate response models","title":"Summary of Bayesian Models as HTML Table","text":"multivariate response models, like mediator-analysis-models, recommended print just one model table, regression displayed “model” output.","code":"tab_model(m2)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_bayes.html","id":"show-two-credible-interval-column","dir":"Articles","previous_headings":"","what":"Show two Credible Interval-column","title":"Summary of Bayesian Models as HTML Table","text":"show second CI-column, use show.ci50 = TRUE.","code":"tab_model(m2, show.ci50 = TRUE)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_bayes.html","id":"mixing-multivariate-and-univariate-response-models","dir":"Articles","previous_headings":"","what":"Mixing multivariate and univariate response models","title":"Summary of Bayesian Models as HTML Table","text":"multivariate univariate response models displayed one table, column Response added multivariate response model, indicate different outcomes.","code":"tab_model(m1, m2)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_mixed.html","id":"mixed-models-summaries-as-html-table","dir":"Articles","previous_headings":"","what":"Mixed models summaries as HTML table","title":"Summary of Mixed Models as HTML Table","text":"Unlike tables non-mixed models, tab_models() adds additional information random effects table output mixed models. can hide information show.icc = FALSE show.re.var = FALSE. Furthermore, R-squared values marginal conditional R-squared statistics, based Nakagawa et al. 2017. marginal R-squared considers variance fixed effects, conditional R-squared takes fixed random effects account. p-value simple approximation, based t-statistics using normal distribution function. precise p-value can computed using p.val = \"kr\". case, applies linear mixed models, computation p-values based conditional F-tests Kenward-Roger approximation degrees freedom (using using pbkrtest-package). Note computation time consuming thus used default. can also display approximated degrees freedom show.df.","code":"m1 <- lmer(neg_c_7 ~ c160age + c161sex + e42dep + (1 | cluster), data = efc) m2 <- lmer(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy) tab_model(m1, m2) tab_model(m1, p.val = \"kr\", show.df = TRUE)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_mixed.html","id":"generalized-linear-mixed-models","dir":"Articles","previous_headings":"","what":"Generalized linear mixed models","title":"Summary of Mixed Models as HTML Table","text":"tab_model() can also print combine models different link-functions.","code":"data(\"efc\") efc$neg_c_7d <- ifelse(efc$neg_c_7 < median(efc$neg_c_7, na.rm = TRUE), 0, 1) efc$cluster <- as.factor(efc$e15relat) m3 <- glmer( neg_c_7d ~ c160age + c161sex + e42dep + (1 | cluster), data = efc, family = binomial(link = \"logit\") ) tab_model(m1, m3)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_mixed.html","id":"more-complex-models","dir":"Articles","previous_headings":"","what":"More complex models","title":"Summary of Mixed Models as HTML Table","text":"Finally, example glmmTMB-package show easy print zero-inflated generalized linear mixed models HTML table.","code":"library(glmmTMB) data(\"Salamanders\") m4 <- glmmTMB( count ~ spp + mined + (1 | site), ziformula = ~ spp + mined, family = truncated_poisson(link = \"log\"), data = Salamanders ) tab_model(m1, m3, m4, show.ci = FALSE)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_mixed.html","id":"references","dir":"Articles","previous_headings":"","what":"References","title":"Summary of Mixed Models as HTML Table","text":"Nakagawa S, Johnson P, Schielzeth H (2017) coefficient determination R2 intra-class correlation coefficient generalized linear mixed-effects models revisted expanded. J. R. Soc. Interface 14. doi: 10.1098/rsif.2017.0213","code":""},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"a-simple-html-table-from-regression-results","dir":"Articles","previous_headings":"","what":"A simple HTML table from regression results","title":"Summary of Regression Models as HTML Table","text":"First, fit two linear models demonstrate tab_model()-function. simplest way producing table output passing fitted model parameter. default, estimates, confidence intervals (CI) p-values (p) reported. summary, numbers observations well R-squared values shown.","code":"m1 <- lm(barthtot ~ c160age + c12hour + c161sex + c172code, data = efc) m2 <- lm(neg_c_7 ~ c160age + c12hour + c161sex + e17age, data = efc) tab_model(m1)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"automatic-labelling","dir":"Articles","previous_headings":"","what":"Automatic labelling","title":"Summary of Regression Models as HTML Table","text":"sjPlot-packages features labelled data, coefficients table already labelled example. name dependent variable(s) used main column header model. non-labelled data, coefficient names shown. factors involved auto.label = TRUE, “pretty” parameters names used (see format_parameters().","code":"data(mtcars) m.mtcars <- lm(mpg ~ cyl + hp + wt, data = mtcars) tab_model(m.mtcars) set.seed(2) dat <- data.frame( y = runif(100, 0, 100), drug = as.factor(sample(c(\"nonsense\", \"useful\", \"placebo\"), 100, TRUE)), group = as.factor(sample(c(\"control\", \"treatment\"), 100, TRUE)) ) pretty_names <- lm(y ~ drug * group, data = dat) tab_model(pretty_names)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"turn-off-automatic-labelling","dir":"Articles","previous_headings":"Automatic labelling","what":"Turn off automatic labelling","title":"Summary of Regression Models as HTML Table","text":"turn automatic labelling, use auto.label = FALSE, provide empty character vector pred.labels dv.labels. models non-labelled data factors.","code":"tab_model(m1, auto.label = FALSE) tab_model(pretty_names, auto.label = FALSE)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"more-than-one-model","dir":"Articles","previous_headings":"","what":"More than one model","title":"Summary of Regression Models as HTML Table","text":"tab_model() can print multiple models , printed side--side. Identical coefficients matched row.","code":"tab_model(m1, m2)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"generalized-linear-models","dir":"Articles","previous_headings":"","what":"Generalized linear models","title":"Summary of Regression Models as HTML Table","text":"generalized linear models, ouput slightly adapted. Instead Estimates, column named Odds Ratios, Incidence Rate Ratios etc., depending model. coefficients case automatically converted (exponentiated). Furthermore, pseudo R-squared statistics shown summary.","code":"m3 <- glm( tot_sc_e ~ c160age + c12hour + c161sex + c172code, data = efc, family = poisson(link = \"log\") ) efc$neg_c_7d <- ifelse(efc$neg_c_7 < median(efc$neg_c_7, na.rm = TRUE), 0, 1) m4 <- glm( neg_c_7d ~ c161sex + barthtot + c172code, data = efc, family = binomial(link = \"logit\") ) tab_model(m3, m4)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"untransformed-estimates-on-the-linear-scale","dir":"Articles","previous_headings":"Generalized linear models","what":"Untransformed estimates on the linear scale","title":"Summary of Regression Models as HTML Table","text":"plot estimates linear scale, use transform = NULL.","code":"tab_model(m3, m4, transform = NULL, auto.label = FALSE)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"more-complex-models","dir":"Articles","previous_headings":"","what":"More complex models","title":"Summary of Regression Models as HTML Table","text":"models, like hurdle- zero-inflated models, also work tab_model(). case, zero inflation model indicated table. Use show.zeroinf = FALSE hide part table. can combine model one table.","code":"library(pscl) data(\"bioChemists\") m5 <- zeroinfl(art ~ fem + mar + kid5 + ment | kid5 + phd + ment, data = bioChemists) tab_model(m5) tab_model(m1, m3, m5, auto.label = FALSE, show.ci = FALSE)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"show-or-hide-further-columns","dir":"Articles","previous_headings":"","what":"Show or hide further columns","title":"Summary of Regression Models as HTML Table","text":"tab_model() argument allow show hide specific columns output: show.est show/hide column model estimates. show.ci show/hide column confidence intervals. show.se show/hide column standard errors. show.std show/hide column standardized estimates (standard errors). show.p show/hide column p-values. show.stat show/hide column coefficients’ test statistics. show.df linear mixed models, p-values based degrees freedom Kenward-Rogers approximation, degrees freedom shown.","code":""},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"adding-columns","dir":"Articles","previous_headings":"Show or hide further columns","what":"Adding columns","title":"Summary of Regression Models as HTML Table","text":"following example, standard errors, standardized coefficients test statistics also shown.","code":"tab_model(m1, show.se = TRUE, show.std = TRUE, show.stat = TRUE)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"removing-columns","dir":"Articles","previous_headings":"Show or hide further columns","what":"Removing columns","title":"Summary of Regression Models as HTML Table","text":"following example, default columns removed.","code":"tab_model(m3, m4, show.ci = FALSE, show.p = FALSE, auto.label = FALSE)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"removing-and-sorting-columns","dir":"Articles","previous_headings":"Show or hide further columns","what":"Removing and sorting columns","title":"Summary of Regression Models as HTML Table","text":"Another way remove columns, also allows reorder columns, col.order-argument. character vector, element indicates column output. value \"est\", instance, indicates estimates, \"std.est\" column standardized estimates . default, col.order contains possible columns. columns shown (see previous tables, example using show.se = TRUE show standard errors, show.st = TRUE show standardized estimates) printed default. Colums excluded col.order shown, matter show*-arguments TRUE FALSE. show.se = TRUE, butcol.order contain element \"se\", standard errors shown. hand, show.est = FALSE, col.order include element \"est\", columns estimates shown. summary, col.order can used exclude columns table change order colums.","code":"tab_model( m1, show.se = TRUE, show.std = TRUE, show.stat = TRUE, col.order = c(\"p\", \"stat\", \"est\", \"std.se\", \"se\", \"std.est\") )"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"collapsing-columns","dir":"Articles","previous_headings":"Show or hide further columns","what":"Collapsing columns","title":"Summary of Regression Models as HTML Table","text":"collapse.ci collapse.se, columns confidence intervals standard errors can collapsed one column together estimates. Sometimes table layout required.","code":"tab_model(m1, collapse.ci = TRUE)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"defining-own-labels","dir":"Articles","previous_headings":"","what":"Defining own labels","title":"Summary of Regression Models as HTML Table","text":"different options change labels column headers coefficients, e.g. : pred.labels change names coefficients Predictors column. Note length pred.labels must exactly match amount predictors Predictor column. dv.labels change names model columns, labelled variable labels / names dependent variables. , various string.*-arguments, change name column headings.","code":"tab_model( m1, m2, pred.labels = c(\"Intercept\", \"Age (Carer)\", \"Hours per Week\", \"Gender (Carer)\", \"Education: middle (Carer)\", \"Education: high (Carer)\", \"Age (Older Person)\"), dv.labels = c(\"First Model\", \"M2\"), string.pred = \"Coeffcient\", string.ci = \"Conf. Int (95%)\", string.p = \"P-Value\" )"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"including-reference-level-of-categorical-predictors","dir":"Articles","previous_headings":"","what":"Including reference level of categorical predictors","title":"Summary of Regression Models as HTML Table","text":"default, categorical predictors, variable names categories regression coefficients shown table output. can include reference level categorical predictors setting show.reflvl = TRUE. show variable names, categories include reference level, also set prefix.labels = \"varname\".","code":"library(glmmTMB) data(\"Salamanders\") model <- glm( count ~ spp + Wtemp + mined + cover, family = poisson(), data = Salamanders ) tab_model(model) tab_model(model, show.reflvl = TRUE) tab_model(model, show.reflvl = TRUE, prefix.labels = \"varname\")"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"style-of-p-values","dir":"Articles","previous_headings":"","what":"Style of p-values","title":"Summary of Regression Models as HTML Table","text":"can change style p-values displayed argument p.style. p.style = \"stars\", p-values indicated * table. p<0.05 ** p<0.01 *** p<0.001 Another option scientific notation, using p.style = \"scientific\", also can combined digits.p.","code":"tab_model(m1, m2, p.style = \"stars\") tab_model(m1, m2, p.style = \"scientific\", digits.p = 2)"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"automatic-matching-for-named-vectors","dir":"Articles","previous_headings":"Style of p-values","what":"Automatic matching for named vectors","title":"Summary of Regression Models as HTML Table","text":"Another way easily assign labels named vectors. case, doesn’t matter pred.labels labels coefficients model(s), order labels passed tab_model(). requirement labels’ names equal coefficients names appear summary()-output.","code":"# example, coefficients are \"c161sex2\" or \"c172code3\" summary(m1) #> #> Call: #> lm(formula = barthtot ~ c160age + c12hour + c161sex + c172code, #> data = efc) #> #> Residuals: #> Min 1Q Median 3Q Max #> -75.144 -14.944 4.401 18.661 72.393 #> #> Coefficients: #> Estimate Std. Error t value Pr(>|t|) #> (Intercept) 87.14994 4.68009 18.621 < 2e-16 *** #> c160age -0.20716 0.07211 -2.873 0.00418 ** #> c12hour -0.27883 0.01865 -14.950 < 2e-16 *** #> c161sex2 -0.39402 2.08893 -0.189 0.85044 #> c172code2 1.36596 2.28440 0.598 0.55004 #> c172code3 -1.64045 2.84037 -0.578 0.56373 #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 #> #> Residual standard error: 25.35 on 815 degrees of freedom #> (87 observations deleted due to missingness) #> Multiple R-squared: 0.2708, Adjusted R-squared: 0.2664 #> F-statistic: 60.54 on 5 and 815 DF, p-value: < 2.2e-16 pl <- c( `(Intercept)` = \"Intercept\", e17age = \"Age (Older Person)\", c160age = \"Age (Carer)\", c12hour = \"Hours per Week\", barthtot = \"Barthel-Index\", c161sex2 = \"Gender (Carer)\", c172code2 = \"Education: middle (Carer)\", c172code3 = \"Education: high (Carer)\", a_non_used_label = \"We don't care\" ) tab_model( m1, m2, m3, m4, pred.labels = pl, dv.labels = c(\"Model1\", \"Model2\", \"Model3\", \"Model4\"), show.ci = FALSE, show.p = FALSE, transform = NULL )"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_estimates.html","id":"keep-or-remove-coefficients-from-the-table","dir":"Articles","previous_headings":"","what":"Keep or remove coefficients from the table","title":"Summary of Regression Models as HTML Table","text":"Using terms- rm.terms-argument allows us explicitly show remove specific coefficients table output. Note names terms keep remove match coefficients names. categorical predictors, one example :","code":"tab_model(m1, terms = c(\"c160age\", \"c12hour\")) tab_model(m1, rm.terms = c(\"c172code2\", \"c161sex2\"))"},{"path":[]},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_robust.html","id":"robust-covariance-matrix-estimation-from-model-parameters","dir":"Articles","previous_headings":"Classical Regression Models","what":"Robust Covariance Matrix Estimation from Model Parameters","title":"Robust Estimation of Standard Errors, Confidence Intervals and p-values","text":"two arguments allow choosing different methods options robust estimation: vcov.fun vcov.args. Let us start simple example, uses heteroskedasticity-consistent covariance matrix estimation estimation-type “HC3” (.e. sandwich::vcovHC(type = \"HC3\") called):","code":"data(iris) model <- lm(Petal.Length ~ Sepal.Length * Species + Sepal.Width, data = iris) # model parameters, where SE, CI and p-values are based on robust estimation tab_model(model, vcov.fun = \"HC3\", show.se = TRUE) # compare standard errors to result from sandwich-package unname(sqrt(diag(sandwich::vcovHC(model)))) #> [1] 0.45382603 0.11884474 0.69296611 0.63031982 0.08318559 0.13045539 0.11841325"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_robust.html","id":"cluster-robust-covariance-matrix-estimation-sandwich","dir":"Articles","previous_headings":"Classical Regression Models","what":"Cluster-Robust Covariance Matrix Estimation (sandwich)","title":"Robust Estimation of Standard Errors, Confidence Intervals and p-values","text":"another covariance matrix estimation required, use vcov.fun-argument. argument needs suffix related vcov*()-functions value, .e. vcov.fun = \"CL\" call sandwich::vcovCL(), vcov.fun = \"HAC\" call sandwich::vcovHAC(). specific estimation type can changed vcov.args. E.g., sandwich::vcovCL() accepts estimation types HC0 HC3. next example, use clustered covariance matrix estimation HC1-estimation type. Usually, clustered covariance matrix estimation used cluster-structure data. variable indicating cluster-structure can defined sandwich::vcovCL() cluster-argument. tab_model(), additional arguments passed functions sandwich package can specified vcov.args:","code":"# change estimation-type tab_model(model, vcov.fun = \"CL\", vcov.args = list(type = \"HC1\"), show.se = TRUE) # compare standard errors to result from sandwich-package unname(sqrt(diag(sandwich::vcovCL(model)))) #> [1] 0.42197635 0.11148130 0.65274212 0.58720711 0.07934029 0.12251570 0.11058144 iris$cluster <- factor(rep(LETTERS[1:8], length.out = nrow(iris))) # change estimation-type, defining additional arguments tab_model( model, vcov.fun = \"CL\", vcov.args = list(type = \"HC1\", cluster = iris$cluster), show.se = TRUE ) # compare standard errors to result from sandwich-package unname(sqrt(diag(sandwich::vcovCL(model, cluster = iris$cluster)))) #> [1] 0.33714287 0.07192334 0.51893777 0.26415406 0.07201145 0.09661348 0.05123446"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_robust.html","id":"cluster-robust-covariance-matrix-estimation-clubsandwich","dir":"Articles","previous_headings":"Classical Regression Models","what":"Cluster-Robust Covariance Matrix Estimation (clubSandwich)","title":"Robust Estimation of Standard Errors, Confidence Intervals and p-values","text":"Cluster-robust estimation variance-covariance matrix can also achieved using clubSandwich::vcovCR(). Thus, vcov.fun = \"CR\", related function clubSandwich package called. Note function requires specification cluster-argument.","code":"# create fake-cluster-variable, to demonstrate cluster robust standard errors iris$cluster <- factor(rep(LETTERS[1:8], length.out = nrow(iris))) # cluster-robust estimation tab_model( model, vcov.fun = \"CR1\", vcov.args = list(cluster = iris$cluster), show.se = TRUE ) # compare standard errors to result from clubSsandwich-package unname(sqrt(diag(clubSandwich::vcovCR(model, type = \"CR1\", cluster = iris$cluster)))) #> [1] 0.33028501 0.07046034 0.50838200 0.25878087 0.07054666 0.09464825 0.05019229"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_robust.html","id":"robust-covariance-matrix-estimation-on-standardized-model-parameters","dir":"Articles","previous_headings":"Classical Regression Models","what":"Robust Covariance Matrix Estimation on Standardized Model Parameters","title":"Robust Estimation of Standard Errors, Confidence Intervals and p-values","text":"Finally, robust estimation can combined standardization. However, robust covariance matrix estimation works show.std = \"std\".","code":"# model parameters, robust estimation on standardized model tab_model( model, show.std = \"std\", vcov.fun = \"HC\" )"},{"path":[]},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_robust.html","id":"robust-covariance-matrix-estimation-for-mixed-models","dir":"Articles","previous_headings":"Mixed Models","what":"Robust Covariance Matrix Estimation for Mixed Models","title":"Robust Estimation of Standard Errors, Confidence Intervals and p-values","text":"linear mixed models, definition clustered (“hierarchical” multilevel) structure data, also possible estimate cluster-robust covariance matrix. possible due clubSandwich package, thus need define arguments example.","code":"library(lme4) data(iris) set.seed(1234) iris$grp <- as.factor(sample(1:3, nrow(iris), replace = TRUE)) # fit example model model <- lme4::lmer( Sepal.Length ~ Species * Sepal.Width + Petal.Length + (1 | grp), data = iris ) # normal model parameters, like from 'summary()' tab_model(model) # model parameters, cluster robust estimation for mixed models tab_model( model, vcov.fun = \"CR1\", vcov.args = list(cluster = iris$grp) )"},{"path":"https://strengejacke.github.io/sjPlot/articles/tab_model_robust.html","id":"robust-covariance-matrix-estimation-on-standardized-mixed-model-parameters","dir":"Articles","previous_headings":"Mixed Models","what":"Robust Covariance Matrix Estimation on Standardized Mixed Model Parameters","title":"Robust Estimation of Standard Errors, Confidence Intervals and p-values","text":", robust estimation can combined standardization linear mixed models well, cases also works show.std = \"std\".","code":"# model parameters, cluster robust estimation on standardized mixed model tab_model( model, show.std = \"std\", vcov.fun = \"CR1\", vcov.args = list(cluster = iris$grp) )"},{"path":[]},{"path":"https://strengejacke.github.io/sjPlot/articles/table_css.html","id":"export-table-as-html-file-to-open-in-word-processors","dir":"Articles","previous_headings":"Copying table output to office or word processors","what":"Export table as HTML file to open in word processors","title":"Customizing HTML tables","text":"can save HTML page file usage specifying file-argument saved HTML file can opened word processors like LibreOffice Microsoft Office.","code":""},{"path":"https://strengejacke.github.io/sjPlot/articles/table_css.html","id":"drag-and-drop-from-browser-or-rstudio-viewer-pane","dir":"Articles","previous_headings":"Copying table output to office or word processors","what":"Drag and drop from browser or RStudio viewer pane","title":"Customizing HTML tables","text":"can directly drag drop table RStudio viewer pane browser word processor. Simply select complete table mouse drag office.","code":""},{"path":"https://strengejacke.github.io/sjPlot/articles/table_css.html","id":"customizing-table-output-with-the-css-parameter","dir":"Articles","previous_headings":"","what":"Customizing table output with the CSS parameter","title":"Customizing HTML tables","text":"table output HTML format. table style (visual appearance) formatted using Cascading Style Sheets (CSS). bit familiar topics, can easily customize appearance table output. Many table elements (header, row, column, cell, summary row, first row column…) CSS-class attributes, can used change table style. Since sjt.* function well tab_model() different table elements thus different class attributes, first need know styles can customized.","code":""},{"path":"https://strengejacke.github.io/sjPlot/articles/table_css.html","id":"retrieving-customizable-styles","dir":"Articles","previous_headings":"Customizing table output with the CSS parameter","what":"Retrieving customizable styles","title":"Customizing HTML tables","text":"table functions invisibly return several values. return value page.style contains style information HTML table. can print style sheet console using cat()-function: HTML code page.content return value. following code prints HTML code table R console: Now can see table elements associated CSS class attributes.","code":"library(sjPlot) data(efc) m <- lm(barthtot ~ c160age + c12hour + c161sex + c172code, data = efc) tab <- tab_model(m) cat(tab$page.style) #> |