Skip to content

Latest commit

 

History

History
153 lines (137 loc) · 5.71 KB

EQUATIONS.md

File metadata and controls

153 lines (137 loc) · 5.71 KB

Equations

In the following the list of the equations solved for each reactor model

Batch Reactor

Mass balance

$$\frac{\partial ω_{i}}{\partial t} = \frac{MW_{i}{R_{i}}^{hom}}{ρ} + \frac{αMW_{i}{R_{i}}^{het}}{ρ} - \frac{ω_i}{m}\frac{\partial m}{\partial t}$$

Total mass balance

$$\frac{\partial m}{\partial t} = αV\sum_{i}^{NS}{MW_{i}R_{i}^{het}}$$

Coverage balance

$$\frac{\partial θ_{j}}{\partial t} = \frac{{R_{j}}^{het}}{Γ}$$

Energy balance

$$\frac{\partial T}{\partial t} = \frac{Q^{hom}}{ρc_{p}} + \frac{αQ^{het}}{ρc_{p}}$$

CSTR Reactor

Mass balance

$$\frac{\partial ω_{i}}{\partial t} = \frac{\dot{m}(ω^0 - ω_i )}{Vρ} + \frac{MW_{i}{R_{i}}^{hom}}{ρ} + \frac{αMW_{i}{R_{i}}^{het}}{ρ}$$

Coverage balance

$$\frac{\partial θ_{j}}{\partial t} = \frac{{R_{j}}^{het}}{Γ}$$

Energy balance

$$\frac{\partial T}{\partial t} = \frac{\dot{m}(T^0 - T)}{Vρ} + \frac{Q^{hom}}{ρc_{p}} + \frac{αQ^{het}}{ρc_{p}}$$

1-D Pseudo-Homogeneous Plug Flow Reactor: Steady-State

Mass balance

$$\frac{\partial ω_{i}}{\partial z} = \frac{MW_{i}A({R_{i}}^{hom} + α{R_{i}}^{het})}{\dot{m}}$$

Coverage balance

$$0 = \frac{{R_{j}}^{het}}{Γ}$$

Energy balance

$$\frac{\partial T}{\partial z} = \frac{A(Q^{hom} + αQ^{het})}{\dot{m}c_{p}}$$

1-D Pseudo-Homogeneous Plug Flow Reactor: Transient

Mass balance

$$\frac{\partial ω_{i}}{\partial t} = -\frac{\dot{m}}{A}\frac{\partial ω_{i}}{\partial z} + D^{mix}_{i}\frac{\partial^2 ω_{i}}{\partial^2 z} + \frac{MW_{i}{R_{i}}^{hom}}{ρ} + \frac{αMW_{i}{R_{i}}^{het}}{ρ}$$

Coverage balance

$$\frac{\partial θ_{j}}{\partial t} = \frac{{R_{j}}^{het}}{Γ}$$

Energy balance

$$\frac{\partial T}{\partial t} = -\frac{\dot{m}}{Aρ}\frac{\partial T}{\partial z} + \frac{k^{gas}_{mix}}{ρc_{p}}\frac{\partial^2 T}{\partial^2 z} + \frac{Q^{hom}}{ρc_{p}} + \frac{αQ^{het}}{ρc_{p}}$$

1-D Heterogeneous Plug Flow Reactor: Steady-State

Mass balance

$$0 = -\frac{\dot{m}}{Aρ}\frac{\partial ω_{i}}{\partial z} + D^{mix}_{i}\frac{\partial^2 ω_{i}}{\partial^2 z} -\frac{A_{s}K_{mat}}{ε}(ω_{i} - ω^S_{i})+ \frac{MW_{i}{R_{i}}^{hom}}{ρ}$$

Solid mass balance

$$0 = A_{s}K_{mat}ρε(ω_{i} - ω^S_{i}) + εαMW_{i}{R_{i}}^{het}$$

Coverage balance

$$0 = \frac{{R_{j}}^{het}}{Γ}$$

Energy balance

$$0 = -\frac{\dot{m}}{Aρ}\frac{\partial T}{\partial z} + \frac{k^{gas}_{mix}}{ρc_{p}}\frac{\partial^2 T}{\partial^2 z} + \frac{Q^{hom}}{ρc_{p}} - \frac{A_{s}h(T - T^s)}{ρc_{p}ε}$$

Solid energy balance

$$0 = \frac{k^S}{ρ^Sc_{p}^S}\frac{\partial^2 T^S}{\partial^2 z} + \frac{αQ^{het}}{ρ^Sc_{p}^S(1-ε)} + \frac{A_{s}h(T - T^s)}{ρ^Sc_{p}^S(1-ε)}$$

1-D Heterogeneous Plug Flow Reactor: Transient

Mass balance

$$\frac{\partial ω_{i}}{dt} = -\frac{\dot{m}}{Aρ}\frac{\partial ω_{i}}{\partial z} + D^{mix}_{i}\frac{\partial^2 ω_{i}}{\partial^2 z} -\frac{A_{s}K_{mat}}{ε}(ω_{i} - ω^S_{i})+ \frac{MW_{i}{R_{i}}^{hom}}{ρ}$$

Solid mass balance

$$0 = A_{s}K_{mat}ρε(ω_{i} - ω^S_{i}) + εαMW_{i}{R_{i}}^{het}$$

Coverage balance

$$\frac{\partial θ_{j}}{\partial t} = \frac{{R_{j}}^{het}}{Γ}$$

Energy balance

$$\frac{\partial T}{\partial t} = -\frac{\dot{m}}{Aρ}\frac{\partial T}{\partial z} + \frac{k^{gas}_{mix}}{ρc_{p}}\frac{\partial^2 T}{\partial^2 z} + \frac{Q^{hom}}{ρc_{p}} - \frac{A_{s}h(T - T^s)}{ρc_{p}ε}$$

Solid energy balance

$$\frac{\partial T^S}{\partial t} = \frac{k^S}{ρ^Sc_{p}^S}\frac{\partial^2 T^S}{\partial^2 z} + \frac{αQ^{het}}{ρ^Sc_{p}^S(1-ε)} + \frac{A_{s}h(T - T^s)}{ρ^Sc_{p}^S(1-ε)}$$

Symbols

Here is the symbols meaning:

Symbol Meaning Unit dimension
$i$ Gas specie index $-$
$j$ Coverage specie index $-$
$α$ Catalytic load $\frac{1}{m}$
$ε$ Reactor void fraction $-$
$ω$ Gas mass fraction $-$
$ω^0$ Gas mass fraction at initial conditions $-$
$ω^S$ Gas mass fraction in the solid phase $-$
$ρ$ Gas density $\frac{kg}{m^3}$
$ρ^S$ Solid density $\frac{kg}{m^3}$
θ Coverage fraction $-$
$Γ$ Site density $\frac{kmol}{m^2}$
$A$ Reactor cross section area $m^2$
$A_{s}$ Reactor specific area $\frac{1}{m}$
$c_{p}$ Gas specific heat $\frac{J}{kgK}$
$c_{p}^S$ Solid specific heat $\frac{J}{kgK}$
$D^{mix}$ Mixture diffusion coefficient $\frac{m^2}{s}$
$h$ Gas-to-solid heat transfer coefficient $\frac{W}{m^2K}$
$k^{gas}_{mix}$ Mixture thermal conductivity $\frac{W}{mK}$
$k^S$ Solid thermal conductivity $\frac{W}{mK}$
$K_{mat}$ Gas-to-solid mass transfer coefficient $\frac{m}{s}$
$m$ Total mass $kg$
$\dot{m}$ Inlet mass flow rate $\frac{kg}{m^3s}$
$MW_{i}$ Gas specie molecular weight $\frac{kg}{kmol}$
$Q^{hom}$ Heat of reaction from homogeneous reactions $\frac{J}{m^3s}$
$Q^{het}$ Heat of reaction from heterogeneous reactions $\frac{J}{m^2s}$
${R_{i}}^{hom}$ Gas specie reaction rate from homogeneous reactions $\frac{kmol}{m^3s}$
${R_{i}}^{het}$ Gas specie reaction rate from heterogeneous reactions $\frac{kmol}{m^2s}$
${R_{j}}^{het}$ Coverage reaction rate $\frac{kmol}{m^2s}$
$t$ Time $s$
$T$ Gas temperature $K$
$T^S$ Solid temperature $K$
$V$ Reactor volume $m^3$
$z$ Reactor lenght $m$