-
Notifications
You must be signed in to change notification settings - Fork 0
/
python2.py
57 lines (49 loc) · 1.63 KB
/
python2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
#add layer
def add_layer(inputs,in_size,out_size,activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
print('3--',Weights)
biases=tf.Variable(tf.zeros([1,out_size])+0.1)
print('4--',biases)
#y=Weights*inputs+biases
y=tf.matmul(inputs,Weights)+biases
print('5--',y)
if activation_function is None:
outputs=y
else:
outputs=activation_function(y)
return outputs
x_data=np.linspace(-1,1,300)[:,np.newaxis]
print('1--',x_data)
noise =np.random.normal(0,0.05,x_data.shape)
y_data=np.square(x_data)-0.5+noise
print('2--',y_data)
xs=tf.placeholder(tf.float32,[None,1])
ys=tf.placeholder(tf.float32,[None,1])
#one layer
l1=add_layer(xs,1,10,activation_function=tf.nn.relu)
#two layer
prediction=add_layer(l1,10,1,activation_function=None)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.initialize_all_variables()
sess=tf.Session()
sess.run(init)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.ion()
plt.show()
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50==0:
print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value=sess.run(prediction,feed_dict={xs:x_data})
lines=ax.plot(x_data,prediction_value,'r-',lw=5)
plt.pause(0.1)