-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Updated energetic calculation which incorporates the effects of temperature and elastic anisotropy.
- Loading branch information
1 parent
94d6986
commit 04b16ab
Showing
1 changed file
with
105 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
clear | ||
|
||
%% Input data in 10^12 dyn/cm^2 (1964Fisher) | ||
|
||
Temp=[4;23;73;123;173;223;273;298;323;373;423;473;523;573;623;673;723;773;823;873;923;973;1023;1073]; | ||
c_11=[1.761;1.759;1.749;1.726;1.699;1.668;1.639;1.624;1.609;1.579;1.551;1.522;1.495;1.468;1.442;1.416;1.392;1.368;1.345;1.322;1.299;1.276;1.253;1.231]; | ||
c_33=[1.905;1.905;1.894;1.876;1.857;1.837;1.816;1.807;1.795;1.774;1.753;1.734;1.715;1.696;1.678;1.661;1.644;1.627;1.610;1.593;1.576;1.560;1.545;1.529]; | ||
c_44=[0.508;0.508;0.505;0.499;0.490;0.481;0.472;0.467;0.462;0.453;0.444;0.434;0.424;0.414;0.404;0.392;0.381;0.370;0.359;0.348;0.337;0.326;0.316;0.307]; | ||
c_66=[0.446;0.446;0.439;0.425;0.405;0.384;0.363;0.352;0.342;0.323;0.304;0.285;0.267;0.250;0.234;0.219;0.205;0.191;0.178;0.166;0.154;0.142;0.130;0.118]; | ||
c_13=[0.683;0.682;0.680;0.681;0.684;0.687;0.689;0.690;0.691;0.694;0.695;0.695;0.692;0.692;0.691;0.690;0.692;0.688;0.688;0.688;0.688]; | ||
c_12=[0.869;0.867;0.871;0.877;0.889;0.901;0.913;0.920;0.925;0.934;0.943;0.952;0.961;0.967;0.973;0.978;0.983;0.985;0.988;0.991;0.992;0.993;0.994;0.996]; | ||
|
||
%% Convert from 10^12 dyn/cm^2 to GPa | ||
|
||
c_11=1E-9*1E-5*1E12*1E4*c_11; % GPa | ||
c_33=1E-9*1E-5*1E12*1E4*c_33; % GPa | ||
c_44=1E-9*1E-5*1E12*1E4*c_44; % GPa | ||
c_66=1E-9*1E-5*1E12*1E4*c_66; % GPa | ||
c_13=1E-9*1E-5*1E12*1E4*c_13; % GPa | ||
c_12=1E-9*1E-5*1E12*1E4*c_12; % GPa | ||
|
||
%% Compile C matrices as a f(T) (2011Tromans) | ||
|
||
maxdata=21; % length of c_13 matrix | ||
|
||
for T=1:maxdata | ||
C_T{T,1}=Temp(T); | ||
C_T{T,2}=[c_11(T),c_12(T),c_13(T), 0, 0, 0; ... | ||
c_12(T),c_11(T),c_13(T), 0, 0, 0; ... | ||
c_13(T),c_13(T),c_33(T), 0, 0, 0; ... | ||
0, 0, 0, c_44(T),0, 0; ... | ||
0, 0, 0, 0, c_44(T),0; ... | ||
0, 0, 0, 0, 0, c_66(T)]; | ||
end | ||
|
||
%% Calculate prismatic energy factor (1976Savin) | ||
|
||
K3_T=C_T; | ||
|
||
for T=1:maxdata | ||
K3_T{T,2}=(C_T{T,2}(1,1)^2-C_T{T,2}(1,2)^2)/(2*C_T{T,2}(1,1)); | ||
end | ||
|
||
K3=cell2mat(K3_T); | ||
|
||
%% Calculate basal energy factor (1976Savin) | ||
|
||
lambdasq_T=K3_T; | ||
|
||
for T=1:maxdata | ||
lambdasq_T{T,2}=(C_T{T,2}(1,1)/C_T{T,2}(3,3))^0.5; | ||
end | ||
|
||
K1_T=K3_T; | ||
|
||
for T=1:maxdata | ||
K1_T{T,2}=(lambdasq_T{T,2}*C_T{T,2}(3,3)+C_T{T,2}(1,3))*... | ||
((C_T{T,2}(4,4)*(lambdasq_T{T,2}*C_T{T,2}(3,3)-C_T{T,2}(1,3)))/... | ||
(C_T{T,2}(3,3)*(lambdasq_T{T,2}*C_T{T,2}(3,3)+C_T{T,2}(1,3)+2*C_T{T,2}(4,4))))^0.5; | ||
end | ||
|
||
K1=cell2mat(K1_T); | ||
|
||
%% Evaluate K_eff at a given temperature | ||
|
||
chosenTemp=823; % K | ||
[chosenTempRow] = find(K3(:,1)==chosenTemp,1); | ||
|
||
% disp(strcat('K3=',num2str(K3(chosenTempRow,2)))) | ||
% disp(strcat('K1=',num2str(K1(chosenTempRow,2)))) | ||
|
||
maxFeret=19.2; % nm, Average maximum Feret diameter from the as-irradiated sample. | ||
minFeret=11.2; % nm, Average minimum Feret diameter from the as-irradiated sample. | ||
FeretRatio=maxFeret/minFeret; % ratio of K3=c to K1=a | ||
|
||
K_eff= FeretRatio*K3(chosenTempRow,2)/(FeretRatio+1) + ... | ||
1*K1(chosenTempRow,2)/(FeretRatio+1); | ||
|
||
%% Calculating the energy per <a> loop in Ti. | ||
|
||
R=19E-9/2; % m, average radius of dislocation loop. | ||
b=0.295E-9; % m, Burgers vector. | ||
K_eff=39.1598E9; % N/m^2 - from ti.m | ||
alpha=1.25; % between 0.5-2, dislocation core parameter, see Hirth + Lothe p.232. | ||
expy=1.17; % between 1.13-1.21 in metals. See Hirth + Lothe p.161. | ||
|
||
circumference=2*pi*R; % m, circumference of dislocation loop. | ||
|
||
eperlength_J_m=((K_eff*b^2)/(4*pi))*(log((4*R)/((b*expy)/(2*alpha)))-1); % J/m, energy per length. | ||
eperlength_eV_nm=1E-9*eperlength_J_m/(1.6E-19); % eV/nm, energy per length. | ||
|
||
eperloop_J=circumference*eperlength_J_m; % J / loop, total energy per dislocation loop. | ||
eperloop_eV=eperloop_J/1.6E-19; % eV / loop, total energy per dislocation loop. | ||
|
||
massdensity=4.5E6; % g/m^3 | ||
atomicmass=47.867; % g/mole | ||
mole=6.02E23; % atoms/mole | ||
numberdensity=massdensity*mole/atomicmass; % atoms/m^3 | ||
|
||
|
||
%% Calculate energy from TEM number density of loops. | ||
|
||
A1_loopdensity=4E21; % /m^3 ± 19% due to uncertainty in sample thickness. | ||
A1_loopenergy=A1_loopdensity*eperloop_J/massdensity % J/g ± 19% due to uncertainty in sample thickness. | ||
|