-
Notifications
You must be signed in to change notification settings - Fork 8
/
net.py
executable file
·519 lines (488 loc) · 23.3 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import functools
import chainer
import chainer.functions as F
import chainer.links as L
import numpy as np
from consts import activation_func, norm_layer
try:
from sn import SNConvolution2D,SNLinear
except:
pass
class SEBlock(chainer.Chain):
def __init__(self,ch,r=16):
super(SEBlock, self).__init__()
with self.init_scope():
self.l1 = L.Linear(ch, ch//r)
self.l2 = L.Linear(ch//r, ch)
def __call__(self, x):
b,c,height,width = x.data.shape
h = F.average(x, axis=(2, 3)) # Global pooling
h = F.relu(self.l1(h))
h = F.sigmoid(self.l2(h))
return(F.transpose(F.broadcast_to(h, (height,width,b,c)), (2, 3, 0, 1)))
##
class EqualizedConv2d(chainer.Chain):
def __init__(self, in_ch, out_ch, ksize, stride, pad, pad_type='zero', equalised=False, nobias=False,separable=False, senet=False):
self.equalised = equalised
self.separable = separable
self.senet = senet
self.pad_type = pad_type
self.pad = pad if pad_type=='zero' else 0
if equalised:
w = chainer.initializers.Normal(1.0) # equalized learning rate
else:
w = chainer.initializers.HeNormal()
bias = chainer.initializers.Zero()
self.ksize = ksize
super(EqualizedConv2d, self).__init__()
with self.init_scope():
if self.separable:
self.depthwise = L.Convolution2D(in_ch, in_ch, ksize, stride, pad, initialW=w, nobias=True, groups=in_ch)
self.pointwise = L.Convolution2D(in_ch, out_ch, 1, 1, initialW=w, nobias=nobias, initial_bias=bias)
else:
self.c = L.Convolution2D(in_ch, out_ch, ksize, stride, pad, initialW=w, nobias=nobias, initial_bias=bias)
if self.senet and out_ch>15:
self.se = SEBlock(out_ch)
def __call__(self, x):
if self.pad_type=='reflect':
h = F.pad(x,[[0,0],[0,0],[self.pad,self.pad],[self.pad,self.pad]],mode='reflect')
else:
h=x
if self.equalised:
b,c,_,_ = h.shape
inv_c = np.sqrt(2.0/c)/self.ksize
h = inv_c * h
if self.separable:
h=self.pointwise(self.depthwise(h))
else:
h = self.c(h)
if hasattr(self,'se'):
h = h * self.se(h)
return h
class EqualizedDeconv2d(chainer.Chain):
def __init__(self, in_ch, out_ch, ksize, stride, pad, equalised=False, nobias=False,separable=False):
self.equalised = equalised
self.separable = separable
self.pad = pad
self.ksize = ksize
if equalised:
w = chainer.initializers.Normal(1.0) # equalized learning rate
else:
w = chainer.initializers.HeNormal()
bias = chainer.initializers.Zero()
self.ksize = ksize
super(EqualizedDeconv2d, self).__init__()
with self.init_scope():
if self.separable:
self.depthwise = L.Deconvolution2D(in_ch, in_ch, ksize, stride, pad, initialW=w, nobias=True, groups=in_ch)
self.pointwise = L.Deconvolution2D(in_ch, out_ch, 1, 1, initialW=w, nobias=nobias, initial_bias=bias)
else:
self.c = L.Deconvolution2D(in_ch, out_ch, ksize, stride, pad, initialW=w, nobias=nobias,initial_bias=bias)
def __call__(self, x):
h=x
if self.equalised:
b,c,_,_ = h.shape
inv_c = np.sqrt(2.0/c)/self.ksize
h = inv_c * h
if self.separable:
h = self.pointwise(self.depthwise(h))
else:
h = self.c(h)
if(self.ksize==3):
h = F.pad(h,[[0,0],[0,0],[0,1],[0,1]],mode='reflect')
return h
def bilinear_upsampling(x):
_, _, height, width = x.shape
h = F.resize_images(x, (height*2, width*2))
return h
### the num of input channels should be divisible by 4
# obsolete: use F.depth2space
class PixelShuffler(chainer.Chain):
def __init__(self, in_ch, out_ch, ksize, pad, nobias=False):
w = chainer.initializers.HeNormal()
bias = chainer.initializers.Zero()
super(PixelShuffler, self).__init__()
with self.init_scope():
# self.c1 = L.Convolution2D(in_ch, out_ch, 1, stride=1, pad=0, initialW=w, nobias=nobias,initial_bias=bias)
self.c = L.Convolution2D( int(in_ch / 4), out_ch, ksize, stride=1, pad=pad, initialW=w, nobias=nobias,initial_bias=bias)
def __call__(self, x):
B,C,H,W = x.shape
h = F.reshape(x, (B, 2, 2, int(C/4), H, W))
h = F.transpose(h, (0, 3, 4, 1, 5, 2))
h = F.reshape(h, (B, int(C/4), H*2, W*2))
return self.c(h)
## attention mechanism: (CHW are preserved)
class NonLocalBlock(chainer.Chain):
def __init__(self, ch):
self.ch = ch
super(NonLocalBlock, self).__init__()
with self.init_scope():
self.theta = SNConvolution2D(ch, ch // 8, 1, 1, 0, nobias=True)
self.phi = SNConvolution2D(ch, ch // 8, 1, 1, 0, nobias=True)
self.g = SNConvolution2D(ch, ch // 2, 1, 1, 0, nobias=True)
self.o_conv = SNConvolution2D(ch // 2, ch, 1, 1, 0, nobias=True)
self.gamma = L.Parameter(np.array(0, dtype="float32"))
def __call__(self, x):
batchsize, _, width, height = x.shape
f = self.theta(x).reshape(batchsize, self.ch // 8, -1)
g = self.phi(x)
g = F.max_pooling_2d(g, 2, 2).reshape(batchsize, self.ch // 8, -1)
attention = F.softmax(F.matmul(f, g, transa=True), axis=2)
h = self.g(x)
h = F.max_pooling_2d(h, 2, 2).reshape(batchsize, self.ch // 2, -1)
o = F.matmul(h, attention, transb=True).reshape(batchsize, self.ch // 2, width, height)
o = self.o_conv(o)
return x + self.gamma.W * o
class ResBlock(chainer.Chain):
def __init__(self, ch, norm='instance', activation='relu', equalised=False, separable=False, skip_conv=False):
super(ResBlock, self).__init__()
self.activation = activation_func[activation]
nobias = False
# nobias = True if 'batch' in norm or 'instance' in norm else False
with self.init_scope():
self.c0 = EqualizedConv2d(ch, ch, 3, 1, 1, pad_type='zero', equalised=equalised, nobias=nobias, separable=separable)
self.c1 = EqualizedConv2d(ch, ch, 3, 1, 1, pad_type='zero', equalised=equalised, nobias=nobias, separable=separable)
if skip_conv: # skip connection
self.cs = EqualizedConv2d(ch, ch, 1, 1, 0)
else:
self.cs = F.identity
self.norm0 = norm_layer[norm](ch)
self.norm1 = norm_layer[norm](ch)
def __call__(self, x):
h = self.c0(x)
h = self.norm0(h)
h = self.activation(h)
h = self.c1(h)
h = self.norm1(h)
return h + self.cs(x)
class CBR(chainer.Chain):
def __init__(self, ch0, ch11, ksize=3, pad=1, norm='instance',
sample='down', activation='relu', dropout=False, equalised=False, separable=False, senet=False):
super(CBR, self).__init__()
self.activation = activation_func[activation]
self.dropout = dropout
self.sample = sample
# nobias = True if 'batch' in norm or 'instance' in norm else False
nobias = False
ch1 = 4*ch11 if 'pixsh' in sample else ch11
with self.init_scope():
if 'down' in sample:
self.c1 = EqualizedConv2d(ch0, ch1, ksize, 2, pad, equalised=equalised, nobias=nobias, separable=separable,senet=senet)
elif sample == 'none-7':
self.c1 = EqualizedConv2d(ch0, ch1, 7, 1, 3, pad_type='reflect', equalised=equalised, nobias=nobias, separable=separable,senet=senet)
elif 'deconv' in sample:
self.c1 = EqualizedDeconv2d(ch0, ch1, ksize, 2, pad, equalised=equalised, nobias=nobias, separable=separable)
else: ## maxpool,avgpool,resize,unpool,none
self.c1 = EqualizedConv2d(ch0, ch1, ksize, 1, pad, equalised=equalised, nobias=nobias, separable=separable,senet=senet)
self.n1 = norm_layer[norm](ch1)
# down/up sample layer
if 'maxpool' in sample:
self.d = functools.partial(F.max_pooling_2d, ksize=2, stride=2)
elif 'avgpool' in sample:
self.d = functools.partial(F.average_pooling_2d, ksize=2, stride=2)
elif 'resize' in sample:
self.u = bilinear_upsampling
elif 'pixsh' in sample:
self.u = functools.partial(F.depth2space,r=2)
elif 'unpool' in sample:
self.u = functools.partial(F.unpooling_2d, ksize=2, stride=2, cover_all=False)
# second convolution
if '_conv' in sample or '_res' in sample:
self.c2 = EqualizedConv2d(ch1, ch1, 3, 1, 1, equalised=equalised, nobias=nobias, separable=separable,senet=senet)
self.n2 = norm_layer[norm](ch1)
# skip connection
if '_res' in sample:
if 'maxpool' in sample or 'avgpool' in sample or 'down' in sample:
self.skip = EqualizedConv2d(ch0, ch1, 3, 2, 1, equalised=equalised, separable=True)
# elif 'unpool' in sample or 'resize' in sample:
# self.skip = EqualizedDeconv2d(ch0, ch1, 3, 2, 1, equalised=equalised, separable=True)
else:
self.skip = EqualizedConv2d(ch0, ch1, 1, 1, 0, equalised=equalised, separable=True)
def __call__(self, x):
# print("*:",x.shape)
h = self.n1(self.c1(x))
if hasattr(self,'c2') and self.activation is not None:
h = self.activation(h)
if hasattr(self,'d'):
h = self.d(h)
if hasattr(self,'c2'):
h = self.n2(self.c2(h))
if self.dropout:
h = F.dropout(h, ratio=self.dropout)
if self.activation is not None:
h = self.activation(h)
if hasattr(self, 'skip'):
h = h + self.skip(x)
if hasattr(self, 'u'):
h = self.u(h)
return h
class LBR(chainer.Chain):
def __init__(self, out_ch, norm='none', activation='tanh', dropout=False):
super(LBR, self).__init__()
self.activation = activation_func[activation]
# nobias = True if 'batch' in norm or 'instance' in norm else False
nobias = False
self.dropout = dropout
with self.init_scope():
self.l0 = L.Linear(None, out_ch, nobias=nobias)
self.norm = norm_layer[norm](out_ch)
def __call__(self, x):
h = self.l0(x)
h = self.norm(h)
# print(F.max(h)) # bug? we always get zero if a normalization is applied
if self.dropout:
h = F.dropout(h, ratio=self.dropout)
if self.activation is not None:
h = self.activation(h)
return h
class Encoder(chainer.Chain):
def __init__(self, args, pretrained_model=None):
super(Encoder, self).__init__()
self.n_resblock = (args.gen_nblock+1) // 2 # half for Enc and half for Dec
self.chs = args.gen_chs
if hasattr(args,'unet'):
self.unet = args.unet
else:
self.unet = 'none'
if hasattr(args,'gen_attention'):
self.attention = args.gen_attention
else:
self.attention = False
self.nfc = args.gen_fc
if pretrained_model:
self.base=pretrained_model
self.update_base = False
with self.init_scope():
for i in range(args.gen_fc):
self.in_c = args.ch
self.in_h = args.crop_height
self.in_w = args.crop_width
# print(args.ch,args.crop_height,args.crop_width)
setattr(self, 'l' + str(i), LBR(args.crop_height*args.crop_width*args.ch, activation=args.gen_fc_activation))
## use pretrained network
if hasattr(args,'gen_pretrained_encoder') and args.gen_pretrained_encoder:
self.pretrained = True
if "resnet" in args.gen_pretrained_encoder:
self.layers = ['conv1']
for i in range(2,args.gen_ndown+1):
self.layers.append('res{}'.format(i))
else: ## VGG16
self.layers = ['conv{}_2'.format(i) for i in range(1,min(3,args.gen_ndown+1))]
self.layers.extend(['conv{}_3'.format(i) for i in range(3,args.gen_ndown+1)])
if pretrained_model is None:
self.update_base = True
if "resnet" in args.gen_pretrained_encoder:
self.base = L.ResNet50Layers()
else:
self.base = L.VGG16Layers()
# print(self.chs, self.layers)
else: ## new network
self.pretrained = False
self.c0 = CBR(args.ch, self.chs[0], norm=args.gen_norm, sample=args.gen_sample, activation=args.gen_activation, equalised=args.eqconv)
for i in range(1,len(self.chs)):
setattr(self, 'd' + str(i), CBR(self.chs[i-1], self.chs[i], ksize=args.gen_ksize, norm=args.gen_norm, sample=args.gen_down, activation=args.gen_activation, dropout=args.gen_dropout, equalised=args.eqconv, separable=args.spconv))
## common part
if self.unet=='conv':
for i in range(len(self.chs)):
setattr(self, 's' + str(i), CBR(self.chs[i], args.skipdim, ksize=3, norm=args.gen_norm, sample='none', equalised=args.eqconv))
for i in range(self.n_resblock):
setattr(self, 'r' + str(i), ResBlock(self.chs[-1], norm=args.gen_norm, activation=args.gen_activation, equalised=args.eqconv, separable=args.spconv))
if self.attention:
setattr(self, 'a', NonLocalBlock(self.chs[-1]))
if hasattr(args,'latent_dim') and args.latent_dim>0:
self.latent_fc = LBR(args.latent_dim, activation=args.gen_fc_activation)
def __call__(self, x):
h = x
## precomposed-FC layers (AUTOMAP)
for i in range(self.nfc):
h=F.reshape(getattr(self, 'l' + str(i))(h),(-1,self.in_c,self.in_h,self.in_w))
## down layers
if self.pretrained:
if h.shape[1]==1:
e = F.concat([h,h,h])
else:
e = h
if self.update_base:
zz = self.base(e, layers=self.layers)
else:
with chainer.using_config('train', False) and chainer.no_backprop_mode():
zz = self.base(e, layers=self.layers)
h = []
for i,layer in enumerate(self.layers):
if self.unet=='conv':
f = getattr(self, 's' + str(i))
h.append(f(zz[layer]))
elif self.unet in ['concat','add']:
h.append(zz[layer])
else:
h.append(0)
e = zz[self.layers[-1]]
else:
e = self.c0(h)
if self.unet=='conv':
h = [self.s0(e)]
elif self.unet in ['concat','add']:
h = [e]
else:
h=[0]
for i in range(1,len(self.chs)):
e = getattr(self, 'd' + str(i))(e)
if self.unet=='conv':
h.append(getattr(self, 's' + str(i))(e))
elif self.unet in ['concat','add']:
h.append(e)
else:
h.append(0)
## residual blocks
for i in range(self.n_resblock):
e = getattr(self, 'r' + str(i))(e)
## attention block
if self.attention:
e = self.a(e)
h.append(e)
## post-composed FC layer
if hasattr(self,'latent_fc'):
h.append(self.latent_fc(e))
# print([e.shape for e in h])
return h
class Decoder(chainer.Chain):
def __init__(self, args):
super(Decoder, self).__init__()
self.n_resblock = args.gen_nblock // 2 # half for Enc and half for Dec
self.chs = args.gen_chs
if hasattr(args,'noise_z'):
self.noise_z = args.noise_z
else:
self.noise_z = 0
if hasattr(args,'unet'):
self.unet = args.unet
else:
self.unet = 'none'
if self.unet=='concat':
up_chs = [2*self.chs[i] for i in range(len(self.chs))]
elif self.unet=='conv':
up_chs = [self.chs[i]+args.skipdim for i in range(len(self.chs))]
else: # ['add','none']:
up_chs = self.chs
with self.init_scope():
if hasattr(args,'latent_dim') and args.latent_dim>0:
self.latent_c = args.gen_chs[-1]
self.latent_h = args.crop_height//(2**(len(args.gen_chs)-1))
self.latent_w = args.crop_width//(2**(len(args.gen_chs)-1))
print("Latent dimensions: ",self.latent_c,self.latent_h,self.latent_w)
self.latent_fc = LBR(self.latent_c*self.latent_h*self.latent_w, activation=args.gen_fc_activation)
for i in range(self.n_resblock):
setattr(self, 'r' + str(i), ResBlock(self.chs[-1], norm=args.gen_norm, activation=args.gen_activation, equalised=args.eqconv, separable=args.spconv))
for i in range(1,len(self.chs)):
setattr(self, 'ua' + str(i), CBR(up_chs[-i], self.chs[-i-1], ksize=args.gen_ksize, norm=args.gen_norm, sample=args.gen_up, activation=args.gen_activation, dropout=args.gen_dropout, equalised=args.eqconv, separable=args.spconv))
if hasattr(args,'gen_pretrained_encoder') and "resnet" in args.gen_pretrained_encoder:
setattr(self, 'ua'+str(len(self.chs)),CBR(up_chs[0], up_chs[0], norm=args.gen_norm, sample='resize', activation=args.gen_activation, equalised=args.eqconv, separable=args.spconv))
else:
setattr(self, 'ua'+str(len(self.chs)),CBR(up_chs[0], up_chs[0], norm=args.gen_norm, sample='none', activation=args.gen_activation, equalised=args.eqconv, separable=args.spconv))
setattr(self, 'ul',CBR(up_chs[0], args.out_ch, norm='none', sample=args.gen_sample, activation=args.gen_out_activation, equalised=args.eqconv, separable=args.spconv))
def __call__(self, h):
if isinstance(h,list):
e = h[-1]
else:
e = h
if chainer.config.train and self.noise_z>0: ## noise injection for latent
e.data += self.noise_z * e.xp.random.randn(*e.data.shape).astype(e.dtype)
if hasattr(self,'latent_fc'):
e = F.reshape(self.latent_fc(e),(-1,self.latent_c,self.latent_h,self.latent_w))
for i in range(self.n_resblock):
e = getattr(self, 'r' + str(i))(e)
for i in range(1,len(self.chs)+1):
#print(e.shape,h[-i-1].shape)
if self.unet in ['conv','concat']:
e = getattr(self, 'ua' + str(i))(F.concat([e,h[-i-1]]))
elif self.unet=='add':
e = getattr(self, 'ua' + str(i))(e+h[-i-1])
else:
e = getattr(self, 'ua' + str(i))(e)
e = self.ul(e)
return e
class Generator(chainer.Chain):
def __init__(self, args, pretrained_model=None):
super(Generator, self).__init__()
with self.init_scope():
self.encoder = Encoder(args, pretrained_model=pretrained_model)
self.decoder = Decoder(args)
def __call__(self, x):
# print(self.encoder.base.conv1_1.W.update_rule.hyperparam.eta,self.decoder.ua1.c1.c.W.update_rule.hyperparam.eta)
h = self.encoder(x)
return self.decoder(h)
class Discriminator(chainer.Chain):
def __init__(self, args, pretrained_model=None, pretrained_off=False):
super(Discriminator, self).__init__()
self.n_down_layers = args.dis_ndown
self.activation = args.dis_activation
self.wgan = args.dis_wgan
self.chs = args.dis_chs
self.attention = args.dis_attention
pad = args.dis_ksize//2
dis_out = 2 if args.dis_reg_weighting>0 else 1 ## weighted discriminator
if pretrained_model:
self.base=pretrained_model
self.update_base = False
with self.init_scope():
if hasattr(args,'dis_pretrained') and args.dis_pretrained and not pretrained_off:
self.pretrained = True
if "resnet" in args.dis_pretrained:
if args.dis_ndown==1:
self.layers = ['conv1']
else:
self.layers = ['res{}'.format(args.dis_ndown)]
else: ## VGG16
if args.dis_ndown < 3:
self.layers = ['conv{}_2'.format(args.dis_ndown)]
else:
self.layers = ['conv{}_3'.format(args.dis_ndown)]
if pretrained_model is None:
if "resnet" in args.dis_pretrained:
self.base = L.ResNet50Layers()
else:
self.base = L.VGG16Layers()
# print(self.chs, self.layers)
else: ## new network
self.pretrained = False
self.c0 = CBR(None, self.chs[0], ksize=args.dis_ksize, pad=pad, norm='none',
sample=args.dis_sample, activation=args.dis_activation,dropout=args.dis_dropout, equalised=args.eqconv,senet=args.senet) #separable=args.spconv)
for i in range(1, len(self.chs)):
setattr(self, 'c' + str(i),
CBR(self.chs[i-1], self.chs[i], ksize=args.dis_ksize, pad=pad, norm=args.dis_norm,
sample=args.dis_down, activation=args.dis_activation, dropout=args.dis_dropout, equalised=args.eqconv, separable=args.spconv, senet=args.senet))
## common
self.csl = CBR(self.chs[-1], 2*self.chs[-1], ksize=args.dis_ksize, pad=pad, norm=args.dis_norm, sample='none', activation=args.dis_activation, dropout=args.dis_dropout, equalised=args.eqconv, separable=args.spconv, senet=args.senet)
if self.attention:
setattr(self, 'a', NonLocalBlock(2*self.chs[-1]))
if self.wgan:
self.fc1 = LBR(1024, activation='relu')
self.fc2 = L.Linear(None, 1)
else:
self.cl = CBR(2*self.chs[-1], dis_out, ksize=args.dis_ksize, pad=pad, norm='none', sample='none', activation='none', dropout=False, equalised=args.eqconv, separable=args.spconv, senet=args.senet)
def __call__(self, x):
if self.pretrained:
if x.shape[1]==1:
h = F.concat([x,x,x])
else:
h = x
if self.update_base:
zz = self.base(h, layers=self.layers)
else:
with chainer.using_config('train', False) and chainer.no_backprop_mode():
zz = self.base(h, layers=self.layers)
h = zz[self.layers[-1]]
else:
h = self.c0(x)
for i in range(1, len(self.chs)):
h = getattr(self, 'c' + str(i))(h)
h = self.csl(h)
if self.attention:
h = getattr(self, 'a')(h)
if self.wgan:
# h = F.average(h, axis=(2, 3)) # global pooling
h = self.fc1(h)
h = self.fc2(h)
else:
h = self.cl(h)
return h