-
Notifications
You must be signed in to change notification settings - Fork 20
/
graph.py
262 lines (213 loc) · 7.11 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import sklearn.metrics
import sklearn.neighbors
import scipy.sparse
import scipy.sparse.linalg
import scipy.spatial.distance
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
def grid(m, dtype=np.float32):
"""Return the embedding of a grid graph."""
M = m**2
x = np.linspace(0, 1, m, dtype=dtype)
y = np.linspace(0, 1, m, dtype=dtype)
xx, yy = np.meshgrid(x, y)
z = np.empty((M, 2), dtype)
z[:, 0] = xx.reshape(M)
z[:, 1] = yy.reshape(M)
return z
def distance_scipy_spatial(z, k=4, metric='euclidean'):
"""Compute exact pairwise distances."""
d = scipy.spatial.distance.pdist(z, metric)
d = scipy.spatial.distance.squareform(d)
# k-NN graph.
idx = np.argsort(d)[:, 1:k+1]
d.sort()
d = d[:, 1:k+1]
return d, idx
def distance_sklearn_metrics(z, k=4, metric='euclidean'):
"""Compute exact pairwise distances."""
d = sklearn.metrics.pairwise.pairwise_distances(
z, metric=metric, n_jobs=-2)
# k-NN graph.
idx = np.argsort(d)[:, 1:k+1]
d.sort()
d = d[:, 1:k+1]
return d, idx
def distance_lshforest(z, k=4, metric='cosine'):
"""Return an approximation of the k-nearest cosine distances."""
assert metric is 'cosine'
lshf = sklearn.neighbors.LSHForest()
lshf.fit(z)
dist, idx = lshf.kneighbors(z, n_neighbors=k+1)
assert dist.min() < 1e-10
dist[dist < 0] = 0
return dist, idx
# TODO: other ANNs s.a. NMSLIB, EFANNA, FLANN, Annoy, sklearn neighbors, PANN
def adjacency(dist, idx):
"""Return the adjacency matrix of a kNN graph."""
M, k = dist.shape
assert M, k == idx.shape
assert dist.min() >= 0
# Weights.
sigma2 = np.mean(dist[:, -1])**2
dist = np.exp(- dist**2 / sigma2)
# Weight matrix.
I = np.arange(0, M).repeat(k)
J = idx.reshape(M*k)
V = dist.reshape(M*k)
W = scipy.sparse.coo_matrix((V, (I, J)), shape=(M, M))
# No self-connections.
W.setdiag(0)
# Non-directed graph.
bigger = W.T > W
W = W - W.multiply(bigger) + W.T.multiply(bigger)
assert W.nnz % 2 == 0
assert np.abs(W - W.T).mean() < 1e-10
assert type(W) is scipy.sparse.csr.csr_matrix
return W
def replace_random_edges(A, noise_level):
"""Replace randomly chosen edges by random edges."""
M, M = A.shape
n = int(noise_level * A.nnz // 2)
indices = np.random.permutation(A.nnz//2)[:n]
rows = np.random.randint(0, M, n)
cols = np.random.randint(0, M, n)
vals = np.random.uniform(0, 1, n)
assert len(indices) == len(rows) == len(cols) == len(vals)
A_coo = scipy.sparse.triu(A, format='coo')
assert A_coo.nnz == A.nnz // 2
assert A_coo.nnz >= n
A = A.tolil()
for idx, row, col, val in zip(indices, rows, cols, vals):
old_row = A_coo.row[idx]
old_col = A_coo.col[idx]
A[old_row, old_col] = 0
A[old_col, old_row] = 0
A[row, col] = 1
A[col, row] = 1
A.setdiag(0)
A = A.tocsr()
A.eliminate_zeros()
return A
def laplacian(W, normalized=True):
"""Return the Laplacian of the weigth matrix."""
# Degree matrix.
d = W.sum(axis=0)
# Laplacian matrix.
if not normalized:
D = scipy.sparse.diags(d.A.squeeze(), 0)
L = D - W
else:
d += np.spacing(np.array(0, W.dtype))
d = 1 / np.sqrt(d)
D = scipy.sparse.diags(d.A.squeeze(), 0)
I = scipy.sparse.identity(d.size, dtype=W.dtype)
L = I - D * W * D
# assert np.abs(L - L.T).mean() < 1e-9
assert type(L) is scipy.sparse.csr.csr_matrix
return L
def lmax(L, normalized=True):
"""Upper-bound on the spectrum."""
if normalized:
return 2
else:
return scipy.sparse.linalg.eigsh(
L, k=1, which='LM', return_eigenvectors=False)[0]
def fourier(L, algo='eigh', k=1):
"""Return the Fourier basis, i.e. the EVD of the Laplacian."""
def sort(lamb, U):
idx = lamb.argsort()
return lamb[idx], U[:, idx]
if algo is 'eig':
lamb, U = np.linalg.eig(L.toarray())
lamb, U = sort(lamb, U)
elif algo is 'eigh':
lamb, U = np.linalg.eigh(L.toarray())
elif algo is 'eigs':
lamb, U = scipy.sparse.linalg.eigs(L, k=k, which='SM')
lamb, U = sort(lamb, U)
elif algo is 'eigsh':
lamb, U = scipy.sparse.linalg.eigsh(L, k=k, which='SM')
return lamb, U
def plot_spectrum(L, algo='eig'):
"""Plot the spectrum of a list of multi-scale Laplacians L."""
# Algo is eig to be sure to get all eigenvalues.
plt.figure(figsize=(17, 5))
for i, lap in enumerate(L):
lamb, U = fourier(lap, algo)
step = 2**i
x = range(step//2, L[0].shape[0], step)
lb = 'L_{} spectrum in [{:1.2e}, {:1.2e}]'.format(i, lamb[0], lamb[-1])
plt.plot(x, lamb, '.', label=lb)
plt.legend(loc='best')
plt.xlim(0, L[0].shape[0])
plt.ylim(ymin=0)
def lanczos(L, X, K):
"""
Given the graph Laplacian and a data matrix, return a data matrix which can
be multiplied by the filter coefficients to filter X using the Lanczos
polynomial approximation.
"""
M, N = X.shape
assert L.dtype == X.dtype
def basis(L, X, K):
"""
Lanczos algorithm which computes the orthogonal matrix V and the
tri-diagonal matrix H.
"""
a = np.empty((K, N), L.dtype)
b = np.zeros((K, N), L.dtype)
V = np.empty((K, M, N), L.dtype)
V[0, ...] = X / np.linalg.norm(X, axis=0)
for k in range(K-1):
W = L.dot(V[k, ...])
a[k, :] = np.sum(W * V[k, ...], axis=0)
W = W - a[k, :] * V[k, ...] - (
b[k, :] * V[k-1, ...] if k > 0 else 0)
b[k+1, :] = np.linalg.norm(W, axis=0)
V[k+1, ...] = W / b[k+1, :]
a[K-1, :] = np.sum(L.dot(V[K-1, ...]) * V[K-1, ...], axis=0)
return V, a, b
def diag_H(a, b, K):
"""Diagonalize the tri-diagonal H matrix."""
H = np.zeros((K*K, N), a.dtype)
H[:K**2:K+1, :] = a
H[1:(K-1)*K:K+1, :] = b[1:, :]
H.shape = (K, K, N)
Q = np.linalg.eigh(H.T, UPLO='L')[1]
Q = np.swapaxes(Q, 1, 2).T
return Q
V, a, b = basis(L, X, K)
Q = diag_H(a, b, K)
Xt = np.empty((K, M, N), L.dtype)
for n in range(N):
Xt[..., n] = Q[..., n].T.dot(V[..., n])
Xt *= Q[0, :, np.newaxis, :]
Xt *= np.linalg.norm(X, axis=0)
return Xt # Q[0, ...]
def rescale_L(L, lmax=2):
"""Rescale the Laplacian eigenvalues in [-1,1]."""
M, M = L.shape
I = scipy.sparse.identity(M, format='csr', dtype=L.dtype)
L /= lmax / 2
L -= I
return L
def chebyshev(L, X, K):
"""Return T_k X where T_k are the Chebyshev polynomials of order up to K.
Complexity is O(KMN)."""
M, N = X.shape
assert L.dtype == X.dtype
# L = rescale_L(L, lmax)
# Xt = T @ X: MxM @ MxN.
Xt = np.empty((K, M, N), L.dtype)
# Xt_0 = T_0 X = I X = X.
Xt[0, ...] = X
# Xt_1 = T_1 X = L X.
if K > 1:
Xt[1, ...] = L.dot(X)
# Xt_k = 2 L Xt_k-1 - Xt_k-2.
for k in range(2, K):
Xt[k, ...] = 2 * L.dot(Xt[k-1, ...]) - Xt[k-2, ...]
return Xt