-
Notifications
You must be signed in to change notification settings - Fork 0
/
MINIMUM PATH SUM
36 lines (29 loc) · 1.1 KB
/
MINIMUM PATH SUM
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
example 1:
Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
Input: grid = [[1,2,3],[4,5,6]]
Output: 12
class Solution {
public int minPathSum(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
// Initialize the first row and first column
for (int i = 1; i < m; i++) {
grid[i][0] += grid[i - 1][0];
}
for (int j = 1; j < n; j++) {
grid[0][j] += grid[0][j - 1];
}
// Calculate the minimum path sum for each cell
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
grid[i][j] += Math.min(grid[i - 1][j], grid[i][j - 1]);
}
}
return grid[m - 1][n - 1]; // The bottom-right cell contains the minimum path sum
}
}