diff --git a/doc/content/source/auxkernels/Current.md b/doc/content/source/auxkernels/Current.md index d03a1ea4f65..dba7e1bb5a2 100644 --- a/doc/content/source/auxkernels/Current.md +++ b/doc/content/source/auxkernels/Current.md @@ -10,7 +10,7 @@ assumes the electrostatic approximation for the electric field. The electrostatic current density is defined as \begin{equation} -J_{j} = q_{j} (\text{sign}_{j} \mu_{j} \ \text{-} \nabla (V) n_{j} - D_{j} \nabla (n_{j})) +J_{j} = q_{j} (\text{sign}_{j} \mu_{j} \left( \text{-} \nabla V\right) n_{j} - D_{j} \nabla (n_{j})) \end{equation} Where $J_{j}$ is the current density, $q_{j}$ is the charge of the species, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $\mu_{j}$ is the mobility coefficient, $V$ is the potential, $n_{j}$ is the density, and $D_{j}$ is the diffusion coefficient. When converting the density to logarithmic form and applying a scaling factor of the mesh, `Current` is defined as diff --git a/doc/content/source/auxkernels/DensityMoles.md b/doc/content/source/auxkernels/DensityMoles.md index 069c0a401f1..8f8adfa48be 100644 --- a/doc/content/source/auxkernels/DensityMoles.md +++ b/doc/content/source/auxkernels/DensityMoles.md @@ -4,10 +4,10 @@ ## Overview -`DensityMoles` converts the density value of a coupled species from a logarithmic molar density into units of $\frac{\#}{m^{3}}$, such that: +`DensityMoles` converts the density value of a coupled species from a logarithmic molar density into units of #$/m^{3}$, such that: \begin{equation} -n_{j} = N_{A} exp(N_{j}) +n_{j} = N_{A} \exp(N_{j}) \end{equation} Where $n_{j}$ is the density, $N_{j}$ is the molar density of the specie in logarithmic form, and $N_{A}$ is Avogadro's number. This is often needed due to Zapdos solving densities using a logarithmic molar formulation to help avoid negative densities and ill-conditioned matrices. diff --git a/doc/content/source/auxkernels/DiffusiveFlux.md b/doc/content/source/auxkernels/DiffusiveFlux.md index 640c9b5ac15..d4dbacd5eda 100644 --- a/doc/content/source/auxkernels/DiffusiveFlux.md +++ b/doc/content/source/auxkernels/DiffusiveFlux.md @@ -9,15 +9,15 @@ The diffusive flux is defined as \begin{equation} -\Gamma_{Diffusion} = \text{-}D_{j} \nabla (n_{j}) +\Gamma_{\text{Diffusion}} = \text{-}D_{j} \nabla (n_{j}) \end{equation} -Where $\Gamma$ is the diffusive flux, $D_{j}$ is the diffusion coefficient and $n_{j}$ is the density. +Where $\Gamma_{\text{Diffusion}}$ is the diffusive flux, $D_{j}$ is the diffusion coefficient and $n_{j}$ is the density. When converting the density to logarithmic form and applying a scaling factor of the mesh, `DiffusiveFlux` is defined as \begin{equation} -\Gamma_{Diffusion} = \text{-}D_{j} N_{A} \exp(N_{j}) \frac{\nabla (N_{j})}{l_{c}} +\Gamma_{\text{Diffusion}} = \text{-}D_{j} N_{A} \exp(N_{j}) \frac{\nabla (N_{j})}{l_{c}} \end{equation} Where $N_{j}$ is the molar density of the specie in logarithmic form, $N_{A}$ is Avogadro's diff --git a/doc/content/source/auxkernels/DriftDiffusionFluxAux.md b/doc/content/source/auxkernels/DriftDiffusionFluxAux.md index 001b9836f62..e2421056c39 100644 --- a/doc/content/source/auxkernels/DriftDiffusionFluxAux.md +++ b/doc/content/source/auxkernels/DriftDiffusionFluxAux.md @@ -16,7 +16,7 @@ assumes a mobility and diffusion coefficient of unity, the electrostatic approxi The electrostatic flux is defined as \begin{equation} -\Gamma_{j} = \text{sign}_{j} \ \text{-} \nabla (V) n_{j} - \nabla (n_{j}) +\Gamma_{j} = \text{sign}_{j} \left( \text{-}\nabla V\right) n_{j} - \nabla (n_{j}) \end{equation} Where $\Gamma_{j}$ is the flux assuming drift-diffusion formulation, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), diff --git a/doc/content/source/auxkernels/EFieldAdvAux.md b/doc/content/source/auxkernels/EFieldAdvAux.md index 50c7ba01f65..cbe951f6a03 100644 --- a/doc/content/source/auxkernels/EFieldAdvAux.md +++ b/doc/content/source/auxkernels/EFieldAdvAux.md @@ -10,14 +10,14 @@ assumes the electrostatic approximation for the electric field. The advective flux is defined as \begin{equation} -\Gamma_{Advection} = \text{sign}_{j} \mu_{j} \ \text{-} \nabla (V) n_{j} +\Gamma_{\text{Advection}} = \text{sign}_{j} \mu_{j} \left( \text{-} \nabla V\right) n_{j} \end{equation} -Where $\Gamma$ is the advective flux, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $\mu_{j}$ is the mobility coefficient, $V$ is the potential, and $n_{j}$ is the density. When converting the density to logarithmic form and applying a scaling factor of the mesh, +Where $\Gamma_{\text{Advection}}$ is the advective flux, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $\mu_{j}$ is the mobility coefficient, $V$ is the potential, and $n_{j}$ is the density. When converting the density to logarithmic form and applying a scaling factor of the mesh, `EFieldAdvAux` is defined as \begin{equation} -\Gamma_{Advection} = N_{A} \text{sign}_{j} \mu_{j} \frac{\text{-} \nabla (V)}{l_{c}} \exp(N_{j}) +\Gamma_{\text{Advection}} = N_{A} \text{sign}_{j} \mu_{j} \frac{\text{-} \nabla (V)}{l_{c}} \exp(N_{j}) \end{equation} Where $N_{j}$ is the molar density of the specie in logarithmic form, $N_{A}$ is Avogadro's diff --git a/doc/content/source/auxkernels/Efield.md b/doc/content/source/auxkernels/Efield.md index bdc945a9800..26a763194f6 100644 --- a/doc/content/source/auxkernels/Efield.md +++ b/doc/content/source/auxkernels/Efield.md @@ -9,10 +9,10 @@ The formulation of `Efield` is defined as \begin{equation} -E_{comp.} = \frac{\text{-} \nabla_{comp.} (V) \ V_{c}}{l_{c}} +E_{\text{comp.}} = \frac{\text{-} \nabla_{\text{comp.}} (V) \ V_{c}}{l_{c}} \end{equation} -Where $E_{comp.}$ is a component of the electric field, $V$ is the potential, $V_{c}$ is the +Where $E_{\text{comp.}}$ is a component of the electric field, $V$ is the potential, $V_{c}$ is the scaling factor of the potential , and $l_{c}$ is the scaling factor of the mesh. ## Example Input File Syntax diff --git a/doc/content/source/auxkernels/PowerDep.md b/doc/content/source/auxkernels/PowerDep.md index 045b9b51971..fe69b36dd04 100644 --- a/doc/content/source/auxkernels/PowerDep.md +++ b/doc/content/source/auxkernels/PowerDep.md @@ -11,18 +11,18 @@ assumes the electrostatic approximation for the electric field. The power deposited by Joule Heating is defined as \begin{equation} -P_{Joule Heating} = \Gamma_{j} \cdot \text{-} \nabla (V) \\ +P_{\text{Joule Heating}} = \Gamma_{j} \cdot \text{-} \nabla (V) \\ \\[10pt] -\Gamma_{j} = q_{j} (\text{sign}_{j} \mu_{j} \ \text{-} \nabla (V) n_{j} - D_{j} \nabla (n_{j})) +\Gamma_{j} = q_{j} (\text{sign}_{j} \mu_{j} \left( \text{-} \nabla V\right) n_{j} - D_{j} \nabla (n_{j})) \end{equation} -Where $P$ is the power deposited by Joule heating, $q_{j}$ is the charge of the species, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $\mu_{j}$ is the mobility coefficient, +Where $P_{\text{Joule Heating}}$ is the power deposited by Joule heating, $q_{j}$ is the charge of the species, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species and $\text{-}1$ for negatively charged species), $\mu_{j}$ is the mobility coefficient, $V$ is the potential, $n_{j}$ is the density, and $D_{j}$ is the diffusion coefficient. When converting the density to log form and applying a scaling factor of the mesh / voltage, `PowerDep` is defined as \begin{equation} -P_{Joule Heating} = \Gamma_{j} \cdot \frac{\text{-} \nabla (V) V_{c}}{l_{c}} \\ +P_{\text{Joule Heating}} = \Gamma_{j} \cdot \frac{\text{-} \nabla (V) V_{c}}{l_{c}} \\ \\[10pt] \Gamma_{j} = q_{j} N_{A} \left( \text{sign}_{j} \mu_{j} \frac{\text{-} \nabla (V)}{l_{c}} \exp(N_{j}) - D_{j} \exp(N_{j}) \frac{\nabla (N_{j})}{l_{c}} \right) \end{equation} @@ -34,7 +34,7 @@ of the potential. For the case where artificial diffusion is introduced to the charge specie flux, an additional term is included, such that: \begin{equation} -\Gamma_{j Total} = \Gamma_{j} + q_{j} N_{A} \mu_{j} \frac{\text{-}\lVert \nabla (V) \rVert_{2}}{l_{c}} \frac{h_{max}}{2} \exp(N_{j}) \frac{\nabla (N_{j})}{l_{c}} +\Gamma_{j\text{, Total}} = \Gamma_{j} + q_{j} N_{A} \mu_{j} \frac{\text{-}\lVert \nabla (V) \rVert_{2}}{l_{c}} \frac{h_{max}}{2} \exp(N_{j}) \frac{\nabla (N_{j})}{l_{c}} \end{equation} Where $h_{max}$ is the max length of the current element. diff --git a/doc/content/source/auxkernels/ProcRate.md b/doc/content/source/auxkernels/ProcRate.md index c444b3d34ad..ede74ee761c 100644 --- a/doc/content/source/auxkernels/ProcRate.md +++ b/doc/content/source/auxkernels/ProcRate.md @@ -4,22 +4,22 @@ ## Overview -`ProcRate` returns the production rate for chemistry reactions determined by Townsend coefficients in units of $\frac{\#}{m^{3}s}$. `ProcRate` +`ProcRate` returns the production rate for chemistry reactions determined by Townsend coefficients in units of #/m$^{3}$s. `ProcRate` assumes the electrostatic approximation for the current. The production rate is defined as \begin{equation} -S_{Townsend} = \alpha_{j} (\mu_{e} \nabla (V) n_{e} - D_{e} \nabla (n_{e})) +S_{\text{Townsend}} = \alpha_{j} (\mu_{e} \left( \nabla -V\right) n_{e} - D_{e} \nabla (n_{e})) \end{equation} -Where $S_{Townsend}$ is the production rate determined by Townsend coefficients, $\alpha_{j}$ is the Townsend coefficient for the reaction, $\mu_{e}$ is the mobility coefficient, +Where $S_{\text{Townsend}}$ is the production rate determined by Townsend coefficients, $\alpha_{j}$ is the Townsend coefficient for the reaction, $\mu_{e}$ is the mobility coefficient, $V$ is the potential, $n_{e}$ is the electron density, and $D_{e}$ is the diffusion coefficient. When converting the density to logarithmic form and applying a scaling factor of the mesh, `ProcRate` is defined as \begin{equation} -S_{Townsend} = \alpha_{j} N_{A} \left(\mu_{e} \frac{\nabla (V)}{l_{c}} \exp(N_{e}) - D_{e} \exp(N_{e}) \frac{\nabla (N_{e})}{l_{c}} \right) +S_{\text{Townsend}} = \alpha_{j} N_{A} \left(\mu_{e} \frac{-\nabla (V)}{l_{c}} \exp(N_{e}) - D_{e} \exp(N_{e}) \frac{\nabla (N_{e})}{l_{c}} \right) \end{equation} Where $N_{e}$ is the molar density of the electrons in logarithmic form, $N_{A}$ is Avogadro's diff --git a/doc/content/source/auxkernels/ProcRateForRateCoeff.md b/doc/content/source/auxkernels/ProcRateForRateCoeff.md index 5805b07c51b..e99d15714a9 100644 --- a/doc/content/source/auxkernels/ProcRateForRateCoeff.md +++ b/doc/content/source/auxkernels/ProcRateForRateCoeff.md @@ -4,20 +4,20 @@ ## Overview -`ProcRateForRateCoeff` returns the production rate for a two body reactions determined by rate coefficients in units of $\frac{\#}{m^{3}s}$. +`ProcRateForRateCoeff` returns the production rate for a two body reactions determined by rate coefficients in units of #/m$^{3}$s. The production rate is defined as \begin{equation} -S_{Rate} = k n_{i} n_{j} +S_{\text{Rate}} = k n_{i} n_{j} \end{equation} -Where $S_{Rate}$ is the production rate determined by rate coefficients, $k$ is the rate coefficient for the reaction, $n_{j}$ is the density for the first species, and $n_{j}$ is the density for the second species. +Where $S_{\text{Rate}}$ is the production rate determined by rate coefficients, $k$ is the rate coefficient for the reaction, $n_{j}$ is the density for the first species, and $n_{j}$ is the density for the second species. When converting the density to logarithmic form, `ProcRateForRateCoeff` is defined as \begin{equation} -S_{Rate} = k N_{A} \exp(N_{i}) \exp(N_{j}) +S_{\text{Rate}} = k N_{A} \exp(N_{i}) \exp(N_{j}) \end{equation} Where $N_{i}$ and $N_{j}$ is the molar density of the species in logarithmic form, and $N_{A}$ is Avogadro's diff --git a/doc/content/source/auxkernels/ProcRateForRateCoeffThreeBody.md b/doc/content/source/auxkernels/ProcRateForRateCoeffThreeBody.md index 5e2dddbfe50..82de554f451 100644 --- a/doc/content/source/auxkernels/ProcRateForRateCoeffThreeBody.md +++ b/doc/content/source/auxkernels/ProcRateForRateCoeffThreeBody.md @@ -4,20 +4,20 @@ ## Overview -`ProcRateForRateCoeffThreeBody` returns the production rate for a three body reactions determined by rate coefficients in units of $\frac{\#}{m^{3}s}$. +`ProcRateForRateCoeffThreeBody` returns the production rate for a three body reactions determined by rate coefficients in units of #/m$^{3}$s. The production rate is defined as \begin{equation} -S_{Rate} = k n_{i} n_{j} n_{k} +S_{\text{Rate}} = k n_{i} n_{j} n_{k} \end{equation} -Where $S_{Rate}$ is the production rate determined by rate coefficients, $k$ is the rate coefficient for the reaction, $n_{j}$ is the density for the first species, $n_{j}$ is the density for the second species, and $n_{k}$ is the density for the third species. +Where $S_{\text{Rate}}$ is the production rate determined by rate coefficients, $k$ is the rate coefficient for the reaction, $n_{j}$ is the density for the first species, $n_{j}$ is the density for the second species, and $n_{k}$ is the density for the third species. When converting the density to logarithmic form, `ProcRateForRateCoeffThreeBody` is defined as \begin{equation} -S_{Rate} = k N_{A} \exp(N_{i}) \exp(N_{j}) \exp(N_{k}) +S_{\text{Rate}} = k N_{A} \exp(N_{i}) \exp(N_{j}) \exp(N_{k}) \end{equation} Where $N_{k}$, $N_{j}$ and $N_{k}$ is the molar density of the species in logarithmic form, and $N_{A}$ is Avogadro's diff --git a/doc/content/source/auxkernels/Sigma.md b/doc/content/source/auxkernels/Sigma.md index 3b8b56a8f76..9b1960857a8 100644 --- a/doc/content/source/auxkernels/Sigma.md +++ b/doc/content/source/auxkernels/Sigma.md @@ -24,7 +24,7 @@ Where $\sigma$ is the surface charge, $\Gamma_{i}$ is the advective flux of the Using the midpoint method for integration, the surface charge calculation becomes \begin{equation} -\sigma_{t} = \sigma_{t-1} + \text{-} \nabla (V) n_{i} \cdot \textbf{n} \ \text{d}t +\sigma_{t} = \sigma_{t-1} - \nabla (V) n_{i} \cdot \textbf{n} \ \text{d}t \end{equation} Where $\sigma_{t}$ is the surface charge of the current time step, $\sigma_{t-1}$ is the surface of the previous time step, and $\text{d}t$ is the difference between time steps. diff --git a/doc/content/source/auxkernels/TotalFlux.md b/doc/content/source/auxkernels/TotalFlux.md index b8e7f360c24..a848a1a092b 100644 --- a/doc/content/source/auxkernels/TotalFlux.md +++ b/doc/content/source/auxkernels/TotalFlux.md @@ -10,13 +10,13 @@ assumes the electrostatic approximation for the electric field. The electrostatic flux is usually defined as \begin{equation} -\Gamma = \text{sign}_{j} \mu_{j} \ \text{-} \nabla (V) n_{j} - D_{j} \nabla (n_{j}) +\Gamma_{j} = \text{sign}_{j} \mu_{j} \left( \text{-} \nabla V \right) n_{j} - D_{j} \nabla (n_{j}) \end{equation} -Where $\Gamma$ is the flux assuming drift-diffusion formulation, $\mu_{j}$ is the mobility coefficient, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species, $\text{-}1$ for negatively charged species and $\text{0}$ for neutral species), $V$ is the potential, $n_{j}$ is the density, and $D_{j}$ is the diffusion coefficient. When converting the density to logarithmic form, `TotalFlux` is defined as +Where $\Gamma_{j}$ is the flux assuming drift-diffusion formulation, $\mu_{j}$ is the mobility coefficient, $\text{sign}_{j}$ indicates the advection behavior ($\text{+}1$ for positively charged species, $\text{-}1$ for negatively charged species and $\text{0}$ for neutral species), $V$ is the potential, $n_{j}$ is the density, and $D_{j}$ is the diffusion coefficient. When converting the density to logarithmic form, `TotalFlux` is defined as \begin{equation} -\Gamma = \text{sign}_{j} \mu_{j} \text{-} \nabla (V) \exp(N_{j}) - D_{j} \exp(N_{j}) \nabla (N_{j}) +\Gamma_{j} = \text{sign}_{j} \mu_{j} \left(\text{-} \nabla V\right) \exp(N_{j}) - D_{j} \exp(N_{j}) \nabla (N_{j}) \end{equation} Where $N_{j}$ is the molar density of the specie in logarithmic form. diff --git a/include/auxkernels/Current.h b/include/auxkernels/Current.h index dbafd91481c..abe73c852ba 100644 --- a/include/auxkernels/Current.h +++ b/include/auxkernels/Current.h @@ -24,10 +24,10 @@ class CurrentTempl : public AuxKernel virtual Real computeValue() override; protected: - int _component; - Real _r_units; + const int _component; + const Real _r_units; - MooseVariable & _density_var; + const MooseVariable & _density_var; const VariableValue & _density_log; const VariableGradient & _grad_density_log; const VariableGradient & _grad_potential; diff --git a/include/auxkernels/DiffusiveFlux.h b/include/auxkernels/DiffusiveFlux.h index 949fe53d416..aec0e26461e 100644 --- a/include/auxkernels/DiffusiveFlux.h +++ b/include/auxkernels/DiffusiveFlux.h @@ -23,8 +23,8 @@ class DiffusiveFluxTempl : public AuxKernel protected: virtual Real computeValue() override; - int _component; - Real _r_units; + const int _component; + const Real _r_units; // Coupled variables diff --git a/include/auxkernels/EFieldAdvAux.h b/include/auxkernels/EFieldAdvAux.h index b2eb588e025..a46335c3575 100644 --- a/include/auxkernels/EFieldAdvAux.h +++ b/include/auxkernels/EFieldAdvAux.h @@ -23,8 +23,8 @@ class EFieldAdvAuxTempl : public AuxKernel protected: virtual Real computeValue() override; - int _component; - Real _r_units; + const int _component; + const Real _r_units; // Coupled variables diff --git a/include/auxkernels/TotalFlux.h b/include/auxkernels/TotalFlux.h index 061ded3b9c9..8120cdd3222 100644 --- a/include/auxkernels/TotalFlux.h +++ b/include/auxkernels/TotalFlux.h @@ -23,8 +23,8 @@ class TotalFluxTempl : public AuxKernel virtual Real computeValue() override; protected: - int _component; - MooseVariable & _density_var; + const int _component; + const MooseVariable & _density_var; const VariableValue & _density_log; const VariableGradient & _grad_density_log; const VariableGradient & _grad_potential; diff --git a/src/auxkernels/AbsValueAux.C b/src/auxkernels/AbsValueAux.C index f007530d8c0..0702a4b225d 100644 --- a/src/auxkernels/AbsValueAux.C +++ b/src/auxkernels/AbsValueAux.C @@ -17,7 +17,7 @@ AbsValueAux::validParams() { InputParameters params = AuxKernel::validParams(); params.addRequiredCoupledVar("u", "Variable we want absolute value of."); - params.addClassDescription("Returns the absolute value of variable"); + params.addClassDescription("Returns the absolute value of the specified variable"); return params; } diff --git a/src/auxkernels/Current.C b/src/auxkernels/Current.C index c4f9d4baa1b..b2b734847e1 100644 --- a/src/auxkernels/Current.C +++ b/src/auxkernels/Current.C @@ -25,12 +25,13 @@ CurrentTempl::validParams() params.addRequiredCoupledVar("density_log", "The electron density"); params.addRequiredCoupledVar("potential", "The potential"); - params.addParam("component", 0, "The component of position. (0 = x, 1 = y, 2 = z)"); + params.addParam( + "component", 0, "The component of the Current vector. (0 = x, 1 = y, 2 = z)"); params.addParam( "art_diff", false, "Whether there is a current contribution from artificial diffusion."); params.addRequiredParam("position_units", "Units of position."); params.addClassDescription( - "Returns the electric current associated with the flux of defined species"); + "Returns the electric current associated with the flux of the specified species"); return params; } diff --git a/src/auxkernels/DiffusiveFlux.C b/src/auxkernels/DiffusiveFlux.C index f5ad07131a5..7cbd59b7127 100644 --- a/src/auxkernels/DiffusiveFlux.C +++ b/src/auxkernels/DiffusiveFlux.C @@ -25,7 +25,7 @@ DiffusiveFluxTempl::validParams() params.addRequiredCoupledVar("density_log", "The variable representing the log of the density."); params.addRequiredParam("position_units", "Units of position."); params.addParam("component", 0, "The component of position. (0 = x, 1 = y, 2 = z)"); - params.addClassDescription("Returns the diffusive flux of defined species"); + params.addClassDescription("Returns the diffusive flux of the specified species"); return params; } diff --git a/src/auxkernels/DriftDiffusionFluxAux.C b/src/auxkernels/DriftDiffusionFluxAux.C index e6bc871dfdb..697f88171e4 100644 --- a/src/auxkernels/DriftDiffusionFluxAux.C +++ b/src/auxkernels/DriftDiffusionFluxAux.C @@ -24,7 +24,7 @@ DriftDiffusionFluxAux::validParams() "negative."); params.addRequiredCoupledVar("u", "The drift-diffusing species."); params.addParam("component", 0, "The flux component you want to see."); - params.addClassDescription("Returns the drift-diffusion flux of defined species"); + params.addClassDescription("Returns the drift-diffusion flux of the specified species"); return params; } diff --git a/src/auxkernels/EFieldAdvAux.C b/src/auxkernels/EFieldAdvAux.C index 939a073b4f0..c67aba2ab5e 100644 --- a/src/auxkernels/EFieldAdvAux.C +++ b/src/auxkernels/EFieldAdvAux.C @@ -26,8 +26,9 @@ EFieldAdvAuxTempl::validParams() "potential", "The gradient of the potential will be used to compute the advection velocity."); params.addRequiredCoupledVar("density_log", "The variable representing the log of the density."); params.addRequiredParam("position_units", "Units of position."); - params.addParam("component", 0, "The component of position. (0 = x, 1 = y, 2 = z)"); - params.addClassDescription("Returns the electric field driven advective flux of defined species"); + params.addParam("component", 0, "The component the EField Vector. (0 = x, 1 = y, 2 = z)"); + params.addClassDescription( + "Returns the electric field driven advective flux of the specified species"); return params; } diff --git a/src/auxkernels/ProcRate.C b/src/auxkernels/ProcRate.C index bbcc78a4bb7..5ed20f673e9 100644 --- a/src/auxkernels/ProcRate.C +++ b/src/auxkernels/ProcRate.C @@ -30,7 +30,7 @@ ProcRateTempl::validParams() "The process that we want to get the townsend coefficient for. Options are iz, ex, and el."); params.addRequiredParam("position_units", "Units of position."); params.addClassDescription( - "Reaction rate for electron impact collisions in units of #/m^3s. User can pass " + "Reaction rate for electron impact collisions in units of #/m$^{3}$s. User can pass " "choice of elastic, excitation, or ionization Townsend coefficients"); return params; } diff --git a/src/auxkernels/ProcRateForRateCoeff.C b/src/auxkernels/ProcRateForRateCoeff.C index 23cdfb81b2b..7077749dedf 100644 --- a/src/auxkernels/ProcRateForRateCoeff.C +++ b/src/auxkernels/ProcRateForRateCoeff.C @@ -25,7 +25,7 @@ ProcRateForRateCoeffTempl::validParams() params.addCoupledVar("w", "The second variable that is reacting to create u."); params.addRequiredParam("reaction", "The full reaction equation."); params.addClassDescription( - "Reaction rate for two body collisions in units of #/m^3s. User can pass " + "Reaction rate for two body collisions in units of #/m$^{3}$s. User can pass " "choice of elastic, excitation, or ionization reaction rate coefficients"); return params; diff --git a/src/auxkernels/ProcRateForRateCoeffThreeBody.C b/src/auxkernels/ProcRateForRateCoeffThreeBody.C index 7383b47583a..1eb651fd9be 100644 --- a/src/auxkernels/ProcRateForRateCoeffThreeBody.C +++ b/src/auxkernels/ProcRateForRateCoeffThreeBody.C @@ -26,7 +26,7 @@ ProcRateForRateCoeffThreeBodyTempl::validParams() params.addCoupledVar("x", "The second variable that is reacting to create u."); params.addRequiredParam("reaction", "The full reaction equation."); params.addClassDescription( - "Reaction rate for three body collisions in units of #/m^3s. User can pass " + "Reaction rate for three body collisions in units of #/m$^{3}$s. User can pass " "choice of elastic, excitation, or ionization reaction rate coefficients"); return params; diff --git a/src/auxkernels/TM0CylindricalErAux.C b/src/auxkernels/TM0CylindricalErAux.C index f66621e1244..0b22ae0dd74 100644 --- a/src/auxkernels/TM0CylindricalErAux.C +++ b/src/auxkernels/TM0CylindricalErAux.C @@ -19,7 +19,7 @@ TM0CylindricalErAux::validParams() params.addRequiredCoupledVar("Hphi", "Magnetic field component Hphi."); params.addRequiredParam("f", "The drive frequency."); params.addParam("eps_r", 1., "The relative permittivity of the medium."); - params.addClassDescription("Calculates the radial E-field for a axisymmetric " + params.addClassDescription("Calculates the radial E-field for an axisymmetric " "TM$_{0}$ wave."); return params; } diff --git a/src/auxkernels/TM0CylindricalEzAux.C b/src/auxkernels/TM0CylindricalEzAux.C index 283af82be20..c54459be916 100644 --- a/src/auxkernels/TM0CylindricalEzAux.C +++ b/src/auxkernels/TM0CylindricalEzAux.C @@ -19,7 +19,7 @@ TM0CylindricalEzAux::validParams() params.addRequiredCoupledVar("Hphi", "Magnetic field component Hphi."); params.addRequiredParam("f", "The drive frequency."); params.addParam("eps_r", 1., "The relative permittivity of the medium."); - params.addClassDescription("Calculates the axial E-field for a axisymmetric " + params.addClassDescription("Calculates the axial E-field for an axisymmetric " "TM$_{0}$ wave."); return params; } diff --git a/src/auxkernels/TotalFlux.C b/src/auxkernels/TotalFlux.C index 8d4a5025120..1d67493ba7e 100644 --- a/src/auxkernels/TotalFlux.C +++ b/src/auxkernels/TotalFlux.C @@ -25,8 +25,9 @@ TotalFluxTempl::validParams() params.addRequiredCoupledVar("density_log", "The electron density"); params.addRequiredCoupledVar("potential", "The potential"); - params.addParam("component", 0, "The component of position. (0 = x, 1 = y, 2 = z)"); - params.addClassDescription("Returns the total flux of defined species"); + params.addParam( + "component", 0, "The component of the TotalFlux vector. (0 = x, 1 = y, 2 = z)"); + params.addClassDescription("Returns the total flux of the specified species"); return params; }