Skip to content

Latest commit

 

History

History
173 lines (94 loc) · 2.83 KB

README.md

File metadata and controls

173 lines (94 loc) · 2.83 KB

EndToEnd Mlops Projects with Mlflow integrated

check app at: http://3.108.62.164:8080/

@ensure_annotations is a decorator to check the input parameters type for production level importance

Workflows

  1. Update config.yaml
  2. Update schema.yaml
  3. Update params.yaml
  4. Update the entity
  5. Update the configuration manager in src config
  6. Update the components
  7. Update the pipeline
  8. Update the main.py
  9. Update the app.py

How to run?

STEPS:

Clone the repository

https://github.com/X-sena-X/EndToEndMLop.git

STEP 01- Create a conda environment after opening the repository

conda create -n mlproj python=3.8 -y
conda activate mlproj

STEP 02- install the requirements

pip install -r requirements.txt
# Finally run the following command
python app.py

Now,

open up you local host and port

MLflow

Documentation

cmd
  • mlflow ui

dagshub

dagshub

MLFLOW_TRACKING_URI=https://dagshub.com/X-sena-X/EndToEndMLop.mlflow
MLFLOW_TRACKING_USERNAME=X-sena-X
MLFLOW_TRACKING_PASSWORD=262488a71dcbed1cd58fe6f82a2d1cbe5db8ce9a
python script.py

Run this to export as env variables:

export MLFLOW_TRACKING_URI=https://dagshub.com/X-sena-X/EndToEndMLop.mlflow 

export MLFLOW_TRACKING_USERNAME=X-sena-X 

export MLFLOW_TRACKING_PASSWORD=262488a71dcbed1cd58fe6f82a2d1cbe5db8ce9a

AWS-CICD-Deployment-with-Github-Actions

1. Login to AWS console.

2. Create IAM user for deployment

#with specific access

1. EC2 access : It is virtual machine

2. ECR: Elastic Container registry to save your docker image in aws


#Description: About the deployment

1. Build docker image of the source code

2. Push your docker image to ECR

3. Launch Your EC2 

4. Pull Your image from ECR in EC2

5. Lauch your docker image in EC2

#Policy:

1. AmazonEC2ContainerRegistryFullAccess

2. AmazonEC2FullAccess

3. Create ECR repo to store/save docker image

- Save the URI: 611205146900.dkr.ecr.ap-south-1.amazonaws.com/mlproj

4. Create EC2 machine (Ubuntu)

5. Open EC2 and Install docker in EC2 Machine:

#optinal

sudo apt-get update -y

sudo apt-get upgrade

#required

curl -fsSL https://get.docker.com -o get-docker.sh

sudo sh get-docker.sh

sudo usermod -aG docker ubuntu

newgrp docker

6. Configure EC2 as self-hosted runner:

setting>actions>runner>new self hosted runner> choose os> then run command one by one

7. Setup github secrets:

AWS_ACCESS_KEY_ID=

AWS_SECRET_ACCESS_KEY=

AWS_REGION = ap-south-1

AWS_ECR_LOGIN_URI =   566373416292.dkr.ecr.ap-south-1.amazonaws.com

ECR_REPOSITORY_NAME = mlproj

About MLflow

MLflow

  • Its Production Grade
  • Trace all of your expriements
  • Logging & tagging your model