-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
217 lines (171 loc) · 7.14 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import cv2
import numpy as np
import time
import os
#import datetime
#from datetime import datetime
#from PIL import Image
#from io import BytesIO
#from scipy import ndimage
#from pympler.tracker import SummaryTracker
#tracker = SummaryTracker()
INPUT_WIDTH = 640
INPUT_HEIGHT = 640
SCORE_THRESHOLD = 0.45
NMS_THRESHOLD = 0.45
CONFIDENCE_THRESHOLD = 0.5
# Text parameters.
FONT_FACE = cv2.FONT_HERSHEY_SIMPLEX
FONT_SCALE = 0.7
THICKNESS = 1
# Colors.
BLACK = (0,0,0)
BLUE = (255,178,50)
YELLOW = (0,255,255)
classesFile = "coco.names"
classes = None
#frame = cv2.imread('1.jpg')
# Give the weight files to the model and load the network using them.
roi_detection_modelWeights = "doors.onnx"
roi_detection_model = cv2.dnn.readNet(roi_detection_modelWeights)
roi_detection_model.setPreferableBackend(cv2.dnn.DNN_BACKEND_DEFAULT)
roi_detection_model.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
#num_rec_modelWeights = "chan_3_32_num.onnx" #ch first
#num_rec_model = cv2.dnn.readNet(num_rec_modelWeights)
def draw_label(im, label, x, y):
"""Draw text onto image at location."""
# Get text size.
text_size = cv2.getTextSize(label, FONT_FACE, FONT_SCALE, THICKNESS)
dim, baseline = text_size[0], text_size[1]
# Use text size to create a BLACK rectangle.
cv2.rectangle(im, (x,y), (x + dim[0], y + dim[1] + baseline), (0,0,0), cv2.FILLED);
# Display text inside the rectangle.
cv2.putText(im, label, (x, y + dim[1]), FONT_FACE, FONT_SCALE, YELLOW, THICKNESS, cv2.LINE_AA)
def pre_process(input_image, net,w,h):
# Create a 4D blob from a frame.
#print(input_image.shape)
blob = cv2.dnn.blobFromImage(input_image, scalefactor=1/255, size=(640, 640), mean=(0, 0, 0), swapRB=True, crop=False)
# blob = cv2.dnn.blobFromImage(input_image, 1/255, (w, h), [0,0,0], 1, crop=False)
# Sets the input to the network.
net.setInput(blob)
# Run the forward pass to get output of the output layers.
outputs = net.forward(net.getUnconnectedOutLayersNames())
del (blob)
return outputs
def get_xyxy(input_image, outputs,w,h):
# Lists to hold respective values while unwrapping.
class_ids = []
confidences = []
boxes = []
output_boxes=[]
# Rows.
rows = outputs[0].shape[1]
image_height, image_width = input_image.shape[:2]
# Resizing factor.
x_factor = image_width / w
y_factor = image_height / h
# Iterate through detections.
for r in range(rows):
row = outputs[0][0][r]
confidence = row[4]
# Discard bad detections and continue.
if confidence >= CONFIDENCE_THRESHOLD:
classes_scores = row[5:]
# Get the index of max class score.
class_id = np.argmax(classes_scores)
# Continue if the class score is above threshold.
if (classes_scores[class_id] > SCORE_THRESHOLD):
confidences.append(confidence)
class_ids.append(class_id)
cx, cy, w, h = row[0], row[1], row[2], row[3]
left = int((cx - w/2) * x_factor)
top = int((cy - h/2) * y_factor)
width = int(w * x_factor)
height = int(h * y_factor)
box = np.array([left, top, width, height])
boxes.append(box)
# Perform non maximum suppression to eliminate redundant, overlapping boxes with lower confidences.
indices = cv2.dnn.NMSBoxes(boxes, confidences, CONFIDENCE_THRESHOLD, NMS_THRESHOLD)
for i in indices:
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
# Draw bounding box.
cv2.rectangle(input_image, (left, top), (left + width, top + height), BLUE, 3*THICKNESS)
# Class label.
#label = "{}:{:.2f}".format(classes[class_ids[i]], confidences[i])
# Draw label.
draw_label(input_image, 'x', left, top)
cv2.imwrite('image.jpg',input_image)
#turn xywh into xyxy
boxes[i][2]=left + width
boxes[i][3]=top + height
#check if the height is suitable
output_boxes.append(boxes[i])
#if height >20:
# output_boxes.append(boxes[i])
#del(input_image,)
return 1,output_boxes,input_image #boxes (left,top,width,height)
def roi_detection(input_image,roi_detection_model,w,h):
detections = pre_process(input_image, roi_detection_model,w,h) #detection results
_,bounding_boxes,input_image=get_xyxy(input_image, detections,w,h) # nms and return the valid bounding boxes
#print( bounding_boxes)
#date = datetime.now().strftime("%Y_%m_%d_%I_%M_%S_%p")
#cv2.imwrite(f"lic_{date}.jpg",image_with_bounding_boxes)
#cv2.imwrite('xf.jpg',image_with_bounding_boxes)
return bounding_boxes ,input_image
# def number_detection(input_image,ch_detection_model,w,h):
# #in_image_copy=input_image.copy()
# detections = pre_process(input_image.copy(), ch_detection_model,w,h) #detection results
# image_with_bounding_boxes,bounding_boxes=get_xyxy(input_image, detections,w,h)
# #date = datetime.now().strftime("%Y_%m_%d_%I_%M_%S_%p")
# #im_name=f"ch_{date}.jpg"
# #print(im_name)
# #cv2.imwrite(im_name,image_with_bounding_boxes)
# # cv2.imwrite('x1.jpg',image_with_bounding_boxes)
# return bounding_boxes
def main_func(img,):
scores='door :'
img = np.array(img)
#send_im_2_tg(img)
t1=time.time()
width_height_diff=img.shape[1]-img.shape[0] #padding
#print(width_height_diff,img.shape)
if width_height_diff>0:
img = cv2.copyMakeBorder(img, 0, width_height_diff, 0, 0, cv2.BORDER_CONSTANT, (0,0,0))
if width_height_diff<0:
img = cv2.copyMakeBorder(img, 0, 0, 0, int(-1*width_height_diff), cv2.BORDER_CONSTANT, (0,0,0))
cropped_licenses_array,input_image=roi_detection(img.copy(),roi_detection_model,640,640)
if len(cropped_licenses_array)!=0:
scores=scores+"True and detection time is "+str(time.time()-t1)
#print('total time in sec :',time.time()-t1)
#tracker.print_diff()
del(img)
#print(scores)
#return (scores+' time_sec : '+str(time.time()-t1))
return input_image ,scores
import gradio as gr
import cv2
import os
# im = gr.Image()
def greet(im):
im=cv2.imread(im)
im,number=main_func(im)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
#print(im)
#im=cv2.imread(im)
# im=os.path.join("/content/s.jpg")
return im ,number
inputs = gr.Image(type="filepath", label="Input Image")
outputs = [gr.Image(type="filepath", label="Output Image"),gr.Textbox()]
title = "YOLO-v5-Door detection for visually impaired people"
demo_app = gr.Interface(examples=["s.jpg"],
fn=greet,
inputs=inputs,
outputs=outputs,
title=title,
cache_examples=True,
)
demo_app.launch()