-
Notifications
You must be signed in to change notification settings - Fork 0
/
decoder.py
177 lines (123 loc) · 7.64 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import torch.nn as nn
import torch.nn.functional as F
from attention import SelfAttention
class VAE_AttentionBlock(nn.Module):
def __init__(self, channels):
super().__init__()
self.groupnorm = nn.GroupNorm(32, channels)
self.attention = SelfAttention(1, channels)
def forward(self, x):
# x: (Batch_Size, Features, Height, Width)
residue = x
# (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height, Width)
x = self.groupnorm(x)
n, c, h, w = x.shape
# (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height * Width)
x = x.view((n, c, h * w))
# (Batch_Size, Features, Height * Width) -> (Batch_Size, Height * Width, Features). Each pixel becomes a feature of size "Features", the sequence length is "Height * Width".
x = x.transpose(-1, -2)
# Perform self-attention WITHOUT mask
# (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features)
x = self.attention(x)
# (Batch_Size, Height * Width, Features) -> (Batch_Size, Features, Height * Width)
x = x.transpose(-1, -2)
# (Batch_Size, Features, Height * Width) -> (Batch_Size, Features, Height, Width)
x = x.view((n, c, h, w))
# (Batch_Size, Features, Height, Width) + (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height, Width)
x += residue
# (Batch_Size, Features, Height, Width)
return x
class VAE_ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.groupnorm_1 = nn.GroupNorm(32, in_channels)
self.conv_1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.groupnorm_2 = nn.GroupNorm(32, out_channels)
self.conv_2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
if in_channels == out_channels:
self.residual_layer = nn.Identity()
else:
self.residual_layer = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0)
def forward(self, x):
# x: (Batch_Size, In_Channels, Height, Width)
residue = x
# (Batch_Size, In_Channels, Height, Width) -> (Batch_Size, In_Channels, Height, Width)
x = self.groupnorm_1(x)
# (Batch_Size, In_Channels, Height, Width) -> (Batch_Size, In_Channels, Height, Width)
x = F.silu(x)
# (Batch_Size, In_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width)
x = self.conv_1(x)
# (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width)
x = self.groupnorm_2(x)
# (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width)
x = F.silu(x)
# (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width)
x = self.conv_2(x)
# (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width)
return x + self.residual_layer(residue)
class VAE_Decoder(nn.Sequential):
def __init__(self):
super().__init__(
# (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 4, Height / 8, Width / 8)
nn.Conv2d(4, 4, kernel_size=1, padding=0),
# (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
nn.Conv2d(4, 512, kernel_size=3, padding=1),
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
VAE_AttentionBlock(512),
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 8, Width / 8)
VAE_ResidualBlock(512, 512),
# Repeats the rows and columns of the data by scale_factor (like when you resize an image by doubling its size).
# (Batch_Size, 512, Height / 8, Width / 8) -> (Batch_Size, 512, Height / 4, Width / 4)
nn.Upsample(scale_factor=2),
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
nn.Conv2d(512, 512, kernel_size=3, padding=1),
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 4, Width / 4)
VAE_ResidualBlock(512, 512),
# (Batch_Size, 512, Height / 4, Width / 4) -> (Batch_Size, 512, Height / 2, Width / 2)
nn.Upsample(scale_factor=2),
# (Batch_Size, 512, Height / 2, Width / 2) -> (Batch_Size, 512, Height / 2, Width / 2)
nn.Conv2d(512, 512, kernel_size=3, padding=1),
# (Batch_Size, 512, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2)
VAE_ResidualBlock(512, 256),
# (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2)
VAE_ResidualBlock(256, 256),
# (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height / 2, Width / 2)
VAE_ResidualBlock(256, 256),
# (Batch_Size, 256, Height / 2, Width / 2) -> (Batch_Size, 256, Height, Width)
nn.Upsample(scale_factor=2),
# (Batch_Size, 256, Height, Width) -> (Batch_Size, 256, Height, Width)
nn.Conv2d(256, 256, kernel_size=3, padding=1),
# (Batch_Size, 256, Height, Width) -> (Batch_Size, 128, Height, Width)
VAE_ResidualBlock(256, 128),
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
VAE_ResidualBlock(128, 128),
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
VAE_ResidualBlock(128, 128),
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
nn.GroupNorm(32, 128),
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 128, Height, Width)
nn.SiLU(),
# (Batch_Size, 128, Height, Width) -> (Batch_Size, 3, Height, Width)
nn.Conv2d(128, 3, kernel_size=3, padding=1),
)
def forward(self, x):
# x: (Batch_Size, 4, Height / 8, Width / 8)
# Remove the scaling added by the Encoder.
x /= 0.18215
for module in self:
x = module(x)
# (Batch_Size, 3, Height, Width)
return x