-
Notifications
You must be signed in to change notification settings - Fork 0
/
CellMix_test.py
529 lines (418 loc) · 21.5 KB
/
CellMix_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
"""
Testing with augmentation (for visulization) Script ver: Dec 13th 13:00
"""
from __future__ import print_function, division
import argparse
import json
import time
import torchvision
from tensorboardX import SummaryWriter
from Models.getmodel import get_model
from Models.GetPromptModel import build_promptmodel
from utils.online_augmentations import get_online_augmentation
from utils.data_augmentation import *
from utils.tools import del_file
from utils.visual_usage import *
def test_model(model, test_dataloader, criterion, class_names, test_dataset_size, model_idx, test_model_idx, edge_size,
Augmentation=None, augmentation_name=None, fix_position_ratio=0.5, puzzle_patch_size=32,
check_minibatch=100, device=None, draw_path='../imaging_results',
enable_attention_check=None, enable_visualize_check=True, writer=None):
"""
Testing iteration
:param model: model object
:param test_dataloader: the test_dataloader obj
:param criterion: loss func obj
:param class_names: The name of classes for priting
:param test_dataset_size: size of datasets
:param model_idx: model idx for the getting trained model
:param test_model_idx: model idx for the save model output files
:param edge_size: image size for the input image
:param Augmentation: Online augmentation
:param augmentation_name: Online augmentation name
:param fix_position_ratio: fix position ratio for cellmix
:param puzzle_patch_size: puzzle size for cellmix
:param check_minibatch: number of skip over minibatch in calculating the criteria's results etc.
:param device: cpu/gpu object
:param draw_path: path folder for output pic
:param enable_attention_check: use attention_check to show the pics of models' attention areas
:param enable_visualize_check: use visualize_check to show the pics
:param writer: attach the records to the tensorboard backend
"""
# scheduler is an LR scheduler object from torch.optim.lr_scheduler.
if device is None:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
since = time.time()
print('Epoch: Test')
print('\nuseing ', augmentation_name, '\n')
print('-' * 10)
phase = 'test'
index = 0
model_time = time.time()
# initiate the empty json dict
json_log = {'test': {}}
# initiate the empty log dict
log_dict = {}
for cls_idx in range(len(class_names)):
log_dict[class_names[cls_idx]] = {'tp': 0.0, 'tn': 0.0, 'fp': 0.0, 'fn': 0.0}
model.eval() # Set model to evaluate mode
# criterias, initially empty
running_loss = 0.0
log_running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in test_dataloader: # use different dataloder in different phase
inputs = inputs.to(device)
# print('inputs[0]',type(inputs[0]))
labels = labels.to(device)
# Online Augmentations attention check
if Augmentation is not None:
# todo 这里建议update fix_position_ratio=0.5, puzzle_patch_size=32
if augmentation_name[0:7] == 'CellMix':
Aug_inputs, Aug_labels, GT_long_labels = Augmentation(inputs, labels,
fix_position_ratio=fix_position_ratio,
puzzle_patch_size=puzzle_patch_size)
else:
Aug_inputs, Aug_labels, GT_long_labels = Augmentation(inputs, labels)
# zero the parameter gradients only need in training
# optimizer.zero_grad()
# forward
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# log criterias: update
log_running_loss += loss.item()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
# Compute recision and recall for each class.
for cls_idx in range(len(class_names)):
# NOTICE remember to put tensor back to cpu
tp = np.dot((labels.cpu().data == cls_idx).numpy().astype(int),
(preds == cls_idx).cpu().numpy().astype(int))
tn = np.dot((labels.cpu().data != cls_idx).numpy().astype(int),
(preds != cls_idx).cpu().numpy().astype(int))
fp = np.sum((preds == cls_idx).cpu().numpy()) - tp
fn = np.sum((labels.cpu().data == cls_idx).numpy()) - tp
# log_dict[cls_idx] = {'tp': 0, 'tn': 0, 'fp': 0, 'fn': 0}
log_dict[class_names[cls_idx]]['tp'] += tp
log_dict[class_names[cls_idx]]['tn'] += tn
log_dict[class_names[cls_idx]]['fp'] += fp
log_dict[class_names[cls_idx]]['fn'] += fn
# attach the records to the tensorboard backend
if writer is not None:
# ...log the running loss
writer.add_scalar(phase + ' minibatch loss',
float(loss.item()),
index)
writer.add_scalar(phase + ' minibatch ACC',
float(torch.sum(preds == labels.data) / inputs.size(0)),
index)
# at the checking time now
if index % check_minibatch == check_minibatch - 1:
model_time = time.time() - model_time
check_index = index // check_minibatch + 1
epoch_idx = 'test'
print('Epoch:', epoch_idx, ' ', phase, 'index of ' + str(check_minibatch) + ' minibatch:',
check_index, ' time used:', model_time)
print('minibatch AVG loss:', float(log_running_loss) / check_minibatch)
# how many image u want to check, should SMALLER THAN the batchsize
if enable_attention_check:
try:
check_SAA(inputs, labels, model, model_idx, edge_size, class_names, num_images=1,
pic_name='GradCAM_' + str(epoch_idx) + '_I_' + str(index + 1),
draw_path=draw_path, writer=writer)
if Augmentation is not None:
describe = '_fix_position_ratio_' + str(fix_position_ratio) \
+ '_puzzle_patch_size_' + str(puzzle_patch_size)
check_SAA(Aug_inputs, GT_long_labels, model, model_idx, edge_size, class_names,
num_images=1,
pic_name=augmentation_name + describe +
'_GradCAM_' + str(epoch_idx) + '_I_' + str(index + 1),
draw_path=draw_path, writer=writer)
except:
print('model:', model_idx, ' with edge_size', edge_size, 'is not supported yet')
else:
pass
if enable_visualize_check:
visualize_check(inputs, labels, model, class_names, num_images=-1,
pic_name='Visual_' + str(epoch_idx) + '_I_' + str(index + 1),
draw_path=draw_path, writer=writer)
if Augmentation is not None:
describe = '_fix_position_ratio_' + str(fix_position_ratio) \
+ '_puzzle_patch_size_' + str(puzzle_patch_size)
visualize_check(Aug_inputs, GT_long_labels, model, class_names, num_images=3,
pic_name=augmentation_name + describe +
'Visual_' + str(epoch_idx) + '_I_' + str(index + 1),
draw_path=draw_path, writer=writer)
model_time = time.time()
log_running_loss = 0.0
index += 1
# json log: update
json_log['test'][phase] = log_dict
# log criterias: print
epoch_loss = running_loss / test_dataset_size
epoch_acc = running_corrects.double() / test_dataset_size * 100
print('\nEpoch: {} \nLoss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
for cls_idx in range(len(class_names)):
# calculating the confusion matrix
tp = log_dict[class_names[cls_idx]]['tp']
tn = log_dict[class_names[cls_idx]]['tn']
fp = log_dict[class_names[cls_idx]]['fp']
fn = log_dict[class_names[cls_idx]]['fn']
tp_plus_fp = tp + fp
tp_plus_fn = tp + fn
fp_plus_tn = fp + tn
fn_plus_tn = fn + tn
# precision
if tp_plus_fp == 0:
precision = 0
else:
precision = float(tp) / tp_plus_fp * 100
# recall
if tp_plus_fn == 0:
recall = 0
else:
recall = float(tp) / tp_plus_fn * 100
# TPR (sensitivity)
TPR = recall
# TNR (specificity)
# FPR
if fp_plus_tn == 0:
TNR = 0
FPR = 0
else:
TNR = tn / fp_plus_tn * 100
FPR = fp / fp_plus_tn * 100
# NPV
if fn_plus_tn == 0:
NPV = 0
else:
NPV = tn / fn_plus_tn * 100
print('{} precision: {:.4f} recall: {:.4f}'.format(class_names[cls_idx], precision, recall))
print('{} sensitivity: {:.4f} specificity: {:.4f}'.format(class_names[cls_idx], TPR, TNR))
print('{} FPR: {:.4f} NPV: {:.4f}'.format(class_names[cls_idx], FPR, NPV))
print('{} TP: {}'.format(class_names[cls_idx], tp))
print('{} TN: {}'.format(class_names[cls_idx], tn))
print('{} FP: {}'.format(class_names[cls_idx], fp))
print('{} FN: {}'.format(class_names[cls_idx], fn))
print('\n')
time_elapsed = time.time() - since
print('Testing complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
# attach the records to the tensorboard backend
if writer is not None:
writer.close()
# save json_log indent=2 for better view
json.dump(json_log, open(os.path.join(draw_path, test_model_idx + '_log.json'), 'w'), ensure_ascii=False, indent=2)
return model
def main(args):
if args.paint:
# use Agg kernal, not painting in the front-desk
import matplotlib
matplotlib.use('Agg')
gpu_idx = args.gpu_idx # GPU idx start with0, -1 to use multipel GPU
enable_tensorboard = args.enable_tensorboard # False
enable_attention_check = args.enable_attention_check # False
enable_visualize_check = args.enable_visualize_check # False
data_augmentation_mode = args.data_augmentation_mode # 0
# Prompt
PromptTuning = args.PromptTuning # None "Deep" / "Shallow"
Prompt_Token_num = args.Prompt_Token_num # 10
PromptUnFreeze = args.PromptUnFreeze # False
model_idx = args.model_idx # the model we are going to use. by the format of Model_size_other_info
# structural parameter
drop_rate = args.drop_rate
attn_drop_rate = args.attn_drop_rate
drop_path_rate = args.drop_path_rate
use_cls_token = False if args.cls_token_off else True
use_pos_embedding = False if args.pos_embedding_off else True
use_att_module = None if args.att_module == 'None' else args.att_module
# PATH info
draw_root = args.draw_root
model_path = args.model_path
dataroot = args.dataroot
model_path_by_hand = args.model_path_by_hand # None
Pre_Trained_model_path = args.Pre_Trained_model_path # None
test_model_idx = 'Aug_CLS_' + model_idx + '_test'
draw_path = os.path.join(draw_root, test_model_idx)
# load trained model by its task-based saving name, also support MIL-SI model but the MIL_Stripe is required
if model_path_by_hand is None:
save_model_path = os.path.join(model_path, 'CLS_' + model_idx + '.pth')
else:
save_model_path = model_path_by_hand
if not os.path.exists(draw_path):
os.makedirs(draw_path)
# choose the test dataset
test_dataroot = os.path.join(dataroot, 'test')
# dataset info
num_classes = args.num_classes # default 0 for auto-fit
edge_size = args.edge_size # 1000 224 384
# validating setting
batch_size = args.batch_size # 10
criterion = nn.CrossEntropyLoss()
# Train Augmentation
augmentation_name = args.augmentation_name # None
# Data Augmentation is not used in validating or testing
data_transforms = data_augmentation(data_augmentation_mode, edge_size=edge_size)
# test setting is the same as the validate dataset's setting
test_datasets = torchvision.datasets.ImageFolder(test_dataroot, data_transforms['val'])
test_dataset_size = len(test_datasets)
# skip minibatch none to draw 20 figs
check_minibatch = args.check_minibatch if args.check_minibatch is not None else max(1, test_dataset_size // (
20 * batch_size))
test_dataloader = torch.utils.data.DataLoader(test_datasets, batch_size=batch_size,
shuffle=args.shuffle_dataloader, num_workers=1)
class_names = [d.name for d in os.scandir(test_dataroot) if d.is_dir()]
class_names.sort()
if num_classes == 0:
print("class_names:", class_names)
num_classes = len(class_names)
else:
if len(class_names) == num_classes:
print("class_names:", class_names)
else:
print('classfication number of the model mismatch the dataset requirement of:', len(class_names))
return -1
# get model
pretrained_backbone = False # model is trained already, pretrained backbone weight is useless here
if PromptTuning is None:
model = get_model(num_classes, edge_size, model_idx, drop_rate, attn_drop_rate, drop_path_rate,
pretrained_backbone, use_cls_token, use_pos_embedding, use_att_module)
else:
if Pre_Trained_model_path is not None and os.path.exists(Pre_Trained_model_path):
base_state_dict = torch.load(Pre_Trained_model_path)
else:
base_state_dict = 'timm'
print('base_state_dict of timm')
print('Test the PromptTuning of ', model_idx)
print('Prompt VPT type:', PromptTuning)
model = build_promptmodel(num_classes, edge_size, model_idx, Prompt_Token_num=Prompt_Token_num,
VPT_type=PromptTuning, base_state_dict=base_state_dict)
try:
if PromptTuning is None:
model.load_state_dict(torch.load(save_model_path))
else:
if PromptUnFreeze:
model.load_state_dict(torch.load(save_model_path))
else:
model.load_prompt(torch.load(save_model_path))
print("model loaded")
print("model :", model_idx)
except:
try:
model = nn.DataParallel(model)
if PromptTuning is None:
model.load_state_dict(torch.load(save_model_path), False)
else:
if PromptUnFreeze:
model.load_state_dict(torch.load(save_model_path))
else:
model.load_prompt(torch.load(save_model_path))
print("DataParallel model loaded")
except:
print("model loading erro!!")
return -1
if gpu_idx == -1:
if torch.cuda.device_count() > 1:
print("Use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
else:
print('we dont have more GPU idx here, try to use gpu_idx=0')
try:
# setting 0 for: only card idx 0 is sighted for this code
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
except:
print("GPU distributing ERRO occur use CPU instead")
else:
# Decide which device we want to run on
try:
# setting k for: only card idx k is sighted for this code
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_idx)
except:
print('we dont have that GPU idx here, try to use gpu_idx=0')
try:
# setting 0 for: only card idx 0 is sighted for this code
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
except:
print("GPU distributing ERRO occur use CPU instead")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # single card for test
model.to(device)
# start tensorboard backend
if enable_tensorboard:
writer = SummaryWriter(draw_path)
else:
writer = None
# if u run locally
# nohup tensorboard --logdir=/home/runs --host=0.0.0.0 --port=7777 &
# tensorboard --logdir=/home/runs --host=0.0.0.0 --port=7777
# Augmentation (test aug trigger p = 100%)
Augmentation = get_online_augmentation(augmentation_name, p=1.0, class_num=num_classes,
batch_size=batch_size, edge_size=edge_size, device=device)
print("*********************************{}*************************************".format('setting'))
print(args)
test_model(model, test_dataloader, criterion, class_names, test_dataset_size, model_idx=model_idx,
test_model_idx=test_model_idx, edge_size=edge_size, Augmentation=Augmentation,
augmentation_name=augmentation_name, fix_position_ratio=args.fix_position_ratio,
puzzle_patch_size=args.puzzle_patch_size, check_minibatch=check_minibatch, device=device,
draw_path=draw_path, enable_attention_check=enable_attention_check,
enable_visualize_check=enable_visualize_check, writer=writer)
def get_args_parser():
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
# Model Name or index
parser.add_argument('--model_idx', default='Hybrid2_384_401_testsample', type=str, help='Model Name or index')
# drop_rate, attn_drop_rate, drop_path_rate
parser.add_argument('--drop_rate', default=0.0, type=float, help='dropout rate , default 0.0')
parser.add_argument('--attn_drop_rate', default=0.0, type=float, help='dropout rate Aftter Attention, default 0.0')
parser.add_argument('--drop_path_rate', default=0.0, type=float, help='drop path for stochastic depth, default 0.0')
# Abalation Studies for MSHT
parser.add_argument('--cls_token_off', action='store_true', help='use cls_token in model structure')
parser.add_argument('--pos_embedding_off', action='store_true', help='use pos_embedding in model structure')
# 'SimAM', 'CBAM', 'SE' 'None'
parser.add_argument('--att_module', default='SimAM', type=str, help='use which att_module in model structure')
# Enviroment parameters
parser.add_argument('--gpu_idx', default=0, type=int,
help='use a single GPU with its index, -1 to use multiple GPU')
# Path parameters
parser.add_argument('--dataroot', default=r'/data/k5_dataset',
help='path to dataset')
parser.add_argument('--model_path', default=r'/home/saved_models',
help='path to save model state-dict')
parser.add_argument('--draw_root', default=r'/home/runs',
help='path to draw and save tensorboard output')
# model_path_by_hand
parser.add_argument('--model_path_by_hand', default=None, type=str, help='path to a model state-dict')
# shuffle_dataloader
parser.add_argument('--shuffle_dataloader', action='store_true', help='shuffle Test dataset')
# Help tool parameters
parser.add_argument('--paint', action='store_false', help='paint in front desk') # matplotlib.use('Agg')
# check tool parameters
parser.add_argument('--enable_tensorboard', action='store_true', help='enable tensorboard to save status')
parser.add_argument('--enable_attention_check', action='store_true', help='check and save attention map')
parser.add_argument('--enable_visualize_check', action='store_true', help='check and save pics')
parser.add_argument('--data_augmentation_mode', default=0, type=int, help='data_augmentation_mode')
# PromptTuning
parser.add_argument('--PromptTuning', default=None, type=str,
help='use Prompt Tuning strategy instead of Finetuning')
# Prompt_Token_num
parser.add_argument('--Prompt_Token_num', default=10, type=int, help='Prompt_Token_num')
# PromptUnFreeze
parser.add_argument('--PromptUnFreeze', action='store_true', help='prompt tuning will all parameaters un-freezed')
# prompt model basic model path
parser.add_argument('--Pre_Trained_model_path', default=None, type=str,
help='Finetuning a trained model in this dataset')
# Online augmentation_name
parser.add_argument('--augmentation_name', default=None, type=str, help='Online augmentation name')
# todo: whis is a port for you to add strategy in the testing
parser.add_argument('--fix_position_ratio', default=0.5, type=float, help='CellMix ratio scheduler strategy')
parser.add_argument('--puzzle_patch_size', default=32, type=int, help='CellMix patch scheduler strategy')
# Dataset based parameters
parser.add_argument('--num_classes', default=0, type=int, help='classification number, default 0 for auto-fit')
parser.add_argument('--edge_size', default=384, type=int, help='edge size of input image') # 224 256 384 1000
# Test setting parameters
parser.add_argument('--batch_size', default=4, type=int, help='testing batch_size default 4 with augmentation')
# check_minibatch for painting pics
parser.add_argument('--check_minibatch', default=None, type=int, help='check batch_size')
return parser
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
main(args)