-
Notifications
You must be signed in to change notification settings - Fork 127
/
stage1.py
249 lines (182 loc) · 8.65 KB
/
stage1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import subprocess
import glob
import cv2
import re
from transformers import AutoProcessor, CLIPSegForImageSegmentation
from PIL import Image
from transparent_background import Remover
from tqdm.auto import tqdm
import torch
import numpy as np
def resize_img(img, w, h):
if img.shape[0] + img.shape[1] < h + w:
interpolation = interpolation=cv2.INTER_CUBIC
else:
interpolation = interpolation=cv2.INTER_AREA
return cv2.resize(img, (w, h), interpolation=interpolation)
def resize_all_img(path, frame_width, frame_height):
if not os.path.isdir(path):
return
pngs = glob.glob( os.path.join(path, "*.png") )
img = cv2.imread(pngs[0])
org_h,org_w = img.shape[0],img.shape[1]
if frame_width == -1 and frame_height == -1:
return
elif frame_width == -1 and frame_height != -1:
frame_width = int(frame_height * org_w / org_h)
elif frame_width != -1 and frame_height == -1:
frame_height = int(frame_width * org_h / org_w)
else:
pass
print("({0},{1}) resize to ({2},{3})".format(org_w, org_h, frame_width, frame_height))
for png in pngs:
img = cv2.imread(png)
img = resize_img(img, frame_width, frame_height)
cv2.imwrite(png, img)
def remove_pngs_in_dir(path):
if not os.path.isdir(path):
return
pngs = glob.glob( os.path.join(path, "*.png") )
for png in pngs:
os.remove(png)
def create_and_mask(mask_dir1, mask_dir2, output_dir):
masks = glob.glob( os.path.join(mask_dir1, "*.png") )
for mask1 in masks:
base_name = os.path.basename(mask1)
print("combine {0}".format(base_name))
mask2 = os.path.join(mask_dir2, base_name)
if not os.path.isfile(mask2):
print("{0} not found!!! -> skip".format(mask2))
continue
img_1 = cv2.imread(mask1)
img_2 = cv2.imread(mask2)
img_1 = np.minimum(img_1,img_2)
out_path = os.path.join(output_dir, base_name)
cv2.imwrite(out_path, img_1)
def create_mask_clipseg(input_dir, output_dir, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, mask_blur_size, mask_blur_size2):
from modules import devices
devices.torch_gc()
device = devices.get_optimal_device_name()
processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
model.to(device)
imgs = glob.glob( os.path.join(input_dir, "*.png") )
texts = [x.strip() for x in clipseg_mask_prompt.split(',')]
exclude_texts = [x.strip() for x in clipseg_exclude_prompt.split(',')] if clipseg_exclude_prompt else None
if exclude_texts:
all_texts = texts + exclude_texts
else:
all_texts = texts
for img_count,img in enumerate(imgs):
image = Image.open(img)
base_name = os.path.basename(img)
inputs = processor(text=all_texts, images=[image] * len(all_texts), padding="max_length", return_tensors="pt")
inputs = inputs.to(device)
with torch.no_grad(), devices.autocast():
outputs = model(**inputs)
if len(all_texts) == 1:
preds = outputs.logits.unsqueeze(0)
else:
preds = outputs.logits
mask_img = None
for i in range(len(all_texts)):
x = torch.sigmoid(preds[i])
x = x.to('cpu').detach().numpy()
# x[x < clipseg_mask_threshold] = 0
x = x > clipseg_mask_threshold
if i < len(texts):
if mask_img is None:
mask_img = x
else:
mask_img = np.maximum(mask_img,x)
else:
mask_img[x > 0] = 0
mask_img = mask_img*255
mask_img = mask_img.astype(np.uint8)
if mask_blur_size > 0:
mask_blur_size = mask_blur_size//2 * 2 + 1
mask_img = cv2.medianBlur(mask_img, mask_blur_size)
if mask_blur_size2 > 0:
mask_blur_size2 = mask_blur_size2//2 * 2 + 1
mask_img = cv2.GaussianBlur(mask_img, (mask_blur_size2, mask_blur_size2), 0)
mask_img = resize_img(mask_img, image.width, image.height)
mask_img = cv2.cvtColor(mask_img, cv2.COLOR_GRAY2RGB)
save_path = os.path.join(output_dir, base_name)
cv2.imwrite(save_path, mask_img)
print("{0} / {1}".format( img_count+1,len(imgs) ))
devices.torch_gc()
def create_mask_transparent_background(input_dir, output_dir, tb_use_fast_mode, tb_use_jit, st1_mask_threshold):
from modules import devices
remover = Remover(fast=tb_use_fast_mode, jit=tb_use_jit, device=devices.get_optimal_device_name())
original_imgs = glob.glob( os.path.join(input_dir, "*.png") )
pbar_original_imgs = tqdm(original_imgs, bar_format='{desc:<15}{percentage:3.0f}%|{bar:50}{r_bar}')
for m in pbar_original_imgs:
base_name = os.path.basename(m)
pbar_original_imgs.set_description('{}'.format(base_name))
img = Image.open(m).convert('RGB')
out = remover.process(img, type='map')
if isinstance(out,Image.Image):
out = np.array(out)
out[out < int( 255 * st1_mask_threshold )] = 0
cv2.imwrite(os.path.join(output_dir, base_name), out)
def ebsynth_utility_stage1(dbg, project_args, frame_width, frame_height, st1_masking_method_index, st1_mask_threshold, tb_use_fast_mode, tb_use_jit, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, clipseg_mask_blur_size, clipseg_mask_blur_size2, is_invert_mask):
dbg.print("stage1")
dbg.print("")
if st1_masking_method_index == 1 and (not clipseg_mask_prompt):
dbg.print("Error: clipseg_mask_prompt is Empty")
return
project_dir, original_movie_path, frame_path, frame_mask_path, _, _, _ = project_args
if is_invert_mask:
if os.path.isdir( frame_path ) and os.path.isdir( frame_mask_path ):
dbg.print("Skip as it appears that the frame and normal masks have already been generated.")
return
# remove_pngs_in_dir(frame_path)
if frame_mask_path:
remove_pngs_in_dir(frame_mask_path)
if frame_mask_path:
os.makedirs(frame_mask_path, exist_ok=True)
if os.path.isdir( frame_path ):
dbg.print("Skip frame extraction")
else:
os.makedirs(frame_path, exist_ok=True)
png_path = os.path.join(frame_path , "%05d.png")
# ffmpeg.exe -ss 00:00:00 -y -i %1 -qscale 0 -f image2 -c:v png "%05d.png"
subprocess.call("ffmpeg -ss 00:00:00 -y -i " + original_movie_path + " -qscale 0 -f image2 -c:v png " + png_path, shell=True)
dbg.print("frame extracted")
frame_width = max(frame_width,-1)
frame_height = max(frame_height,-1)
if frame_width != -1 or frame_height != -1:
resize_all_img(frame_path, frame_width, frame_height)
if frame_mask_path:
if st1_masking_method_index == 0:
create_mask_transparent_background(frame_path, frame_mask_path, tb_use_fast_mode, tb_use_jit, st1_mask_threshold)
elif st1_masking_method_index == 1:
create_mask_clipseg(frame_path, frame_mask_path, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, clipseg_mask_blur_size, clipseg_mask_blur_size2)
elif st1_masking_method_index == 2:
tb_tmp_path = os.path.join(project_dir , "tb_mask_tmp")
if not os.path.isdir( tb_tmp_path ):
os.makedirs(tb_tmp_path, exist_ok=True)
create_mask_transparent_background(frame_path, tb_tmp_path, tb_use_fast_mode, tb_use_jit, st1_mask_threshold)
create_mask_clipseg(frame_path, frame_mask_path, clipseg_mask_prompt, clipseg_exclude_prompt, clipseg_mask_threshold, clipseg_mask_blur_size, clipseg_mask_blur_size2)
create_and_mask(tb_tmp_path,frame_mask_path,frame_mask_path)
dbg.print("mask created")
dbg.print("")
dbg.print("completed.")
def ebsynth_utility_stage1_invert(dbg, frame_mask_path, inv_mask_path):
dbg.print("stage 1 create_invert_mask")
dbg.print("")
if not os.path.isdir( frame_mask_path ):
dbg.print( frame_mask_path + " not found")
dbg.print("Normal masks must be generated previously.")
dbg.print("Do stage 1 with [Ebsynth Utility] Tab -> [configuration] -> [etc]-> [Mask Mode] = Normal setting first")
return
os.makedirs(inv_mask_path, exist_ok=True)
mask_imgs = glob.glob( os.path.join(frame_mask_path, "*.png") )
for m in mask_imgs:
img = cv2.imread(m)
inv = cv2.bitwise_not(img)
base_name = os.path.basename(m)
cv2.imwrite(os.path.join(inv_mask_path,base_name), inv)
dbg.print("")
dbg.print("completed.")