- Description of spin liquids and unconventional ordered states by fermionic wave functions such as the projected BCS states and the Slater-Jastrow-type wave functions
- Use mVMC with the generalized pairing wave functions that include the projected BCS states and the Slater-Jastrow-type wave functions
- mVMC
- "Dictionary" of spin liquid ansatze
(under construction)
-
1D Heisenberg model
-
Projected Fermi sea in 1D, ground state of the Haldane-Shastry model
- Wave function
- f_k = 1 (|k|<pi/2), f_k = 0 (|k|>pi/2)
- Equivalent to \epsilon_k = - 2 \cos k, \Delta_k = 0, \mu_k = 0 (Note that constant shift is allowed in f_k since f_ii is arbitrary for the hard Gutzwiller projection)
- See DOI:10.1103/PhysRevB.36.381 DOI:10.1103/PhysRevLett.59.1472 DOI:10.1103/PhysRevLett.60.635 DOI:10.1103/PhysRevLett.60.639
- Wave function
-
Ground state of the Majumdar-Ghosh model
- Wave function
- f_ij = 1 (|i-j|=1), f_ij = 0 otherwise
- Equivalent to \epsilon_k = -2t \cos 2k, \Delta_k = 4\sqrt{2}t \cos k, \mu = 0, which results in f_k = \sqrt{2} \cos k
- See DOI:10.1063/1.1664978 DOI:10.1063/1.1664979 arXiv:0905.4854
- Wave function
-
VBS order with translation invariant wave functions
- Wave function
- Choose \epsilon_k and \Delta_k so that \sqrt{(\epsilon_k)^2 + (\Delta_k)^2} > 0 for all k
- Seems valid in 1D but not sure for higher dimensions
- See DOI:10.1103/PhysRevLett.91.257005 DOI:10.1103/PhysRevB.93.125127
- Wave function
-
SU(N) case
-
-
1D Hubbard model, t-J model
-
Tomonaga-Luttinger liquid
- Wave function
- Long-range part of the Jastrow factor affects the charge gap
- See DOI:10.1103/PhysRevLett.94.026406 DOI:10.1103/PhysRevB.72.085121
- Wave function
-
Luther-Emery liquid
- Wave function
- Close the charge gap by choosing the Jastrow factor for metal
- Open the spin gap by choosing \sqrt{(\epsilon_k)^2 + (\Delta_k)^2} > 0 for all k
- See DOI:10.1103/PhysRevLett.94.026406 DOI:10.1103/PhysRevB.72.085121
- Wave function
-
-
2D Heisenberg model
-
Square lattice
-
Ground state ansatz for the pure square Heisenberg model
-
Gapless Z2 spin liquid ansatz for the J1-J2 square Heisenberg model (J2:next nearest neighbor)
- Wave function
- Z2Azz13 spin liquid defined as \epsilon_k = 2t(\cos k_x + \cos k_y), \Delta_k = \Delta_{x^2-y^2} (\cos k_x - \cos k_y) + \Delta_{xy} \sin 2k_x \sin 2k_y
- See DOI:10.1103/PhysRevB.66.235110 DOI:10.1103/PhysRevLett.87.097201 DOI:10.1103/PhysRevB.88.060402 DOI:10.1103/PhysRevB.100.125131 DOI:10.1103/PhysRevB.99.100405 nhscp2014, F.Becca
- Wave function
-
Projected Fermi sea
- The state shows unexpected long-range magnetic order, obeys the are law in 2D
- See DOI:10.1209/0295-5075/103/57002 DOI:10.1103/PhysRevLett.107.067202 DOI:10.1103/PhysRevB.93.125127
-
-
Triangular lattice
-
Ground state ansatz for the pure triangular Heisenberg model
- (Short-range) 3-site order (120 Neel) is reproduced by a 2-site (not a 3-site!) unit cell structure
- See DOI:10.1103/PhysRevLett.92.1570031 DOI:10.1103/PhysRevB.74.014408 DOI:10.1103/PhysRevB.80.012404 DOI:10.1103/PhysRevB.88.125135
-
Spin liquid ansatz for the J-J' triangular Heisenberg model (J':spatial anisotropy)
-
Gapless U(1) Dirac spin liquid ansatz for the J1-J2 triangular Heisenberg model (J2:next nearest neighbor)
-
Spin liquid with spinon Fermi surface, projected Fermi sea, ground state ansatz for the triangular Heisenberg model with the strong ring-exchange interaction
-
-
Honeycomb lattice
- Spin liquid ansatz for the J1-J2 honeycomb Heisenberg model (J2:next nearest neighbor)
-
Kagome lattice
-
Gapped Z2 spin liquid ansatz
- See DOI:10.1103/PhysRevB.84.020407 arXiv:1601.02165
- See also (not VMC but) DOI:10.1126/science.1201080 DOI:10.1103/PhysRevLett.109.067201
-
Gapless U(1) Dirac spin liquid ansatz
-
Other spin liquid ansatze
-
-
Square-Kagome lattice, Shuriken lattice
- Spin liquid ansatze, dimer state ansatze
- The ground state of the isotropic model seems to exhibit pinwheel VBC order
- See arXiv:2110.08198
- Spin liquid ansatze, dimer state ansatze
-
-
2D Hubbard model
- Charge order with translation invariant wave functions
-
3D Heisenberg model
-
Pyrochlore lattice
- Spin liquid ansatze, ansatze with inversion/rotation symmetry breaking
- The ground state of the isotropic model seems to exhibit broken inversion symmetry
- See DOI:10.1103/PhysRevLett.126.117204 (GS by DMRG) arXiv:2101.08787 (GS by VMC) DOI:10.1103/PhysRevB.78.180410 (VMC ansatze in Table.I) DOI:10.1103/PhysRevB.79.144432 (VMC ansatze in Table.I) arXiv:2110.08160 (GS by PFFRG, updated VMC ansatze in Table.I)
- Spin liquid ansatze, ansatze with inversion/rotation symmetry breaking
-