Skip to content

Latest commit

 

History

History
168 lines (130 loc) · 5.57 KB

README.md

File metadata and controls

168 lines (130 loc) · 5.57 KB

Prepare Datasets for OneFormer

  • A dataset can be used by accessing DatasetCatalog for its data, or MetadataCatalog for its metadata (class names, etc).

  • This document explains how to setup the builtin datasets so they can be used by the above APIs. Training OneFormer with Custom Datasets gives a deeper dive on how to train OneFormer with custom datasets.

  • Detectron2 has builtin support for a few datasets. The datasets are assumed to exist in a directory specified by the environment variable DETECTRON2_DATASETS. Under this directory, detectron2 will look for datasets in the structure described below, if needed.

    $DETECTRON2_DATASETS/
      ADEChallengeData2016/
      cityscapes/
      coco/
      mapillary_vistas/
    
  • You can set the location for builtin datasets by export DETECTRON2_DATASETS=/path/to/datasets. If left unset, the default is ./datasets relative to your current working directory.

Expected dataset structure for ADE20K

ADEChallengeData2016/
  images/
  annotations/
  objectInfo150.txt
  # download instance annotation
  annotations_instance/
  # generated by prepare_ade20k_sem_seg.py
  annotations_detectron2/
  # below are generated by prepare_ade20k_pan_seg.py
  ade20k_panoptic_{train,val}.json
  ade20k_panoptic_{train,val}/
  # below are generated by prepare_ade20k_ins_seg.py
  ade20k_instance_{train,val}.json
  • Generate annotations_detectron2:

    python datasets/prepare_ade20k_sem_seg.py
  • Install panopticapi by:

    pip install git+https://github.com/cocodataset/panopticapi.git
  • Download the instance annotation from http://sceneparsing.csail.mit.edu/:

    wget http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar
  • Then, run python datasets/prepare_ade20k_pan_seg.py, to combine semantic and instance annotations for panoptic annotations.

  • Run python datasets/prepare_ade20k_ins_seg.py, to extract instance annotations in COCO format.

Expected dataset structure for Cityscapes

cityscapes/
  gtFine/
    train/
      aachen/
        color.png, instanceIds.png, labelIds.png, polygons.json,
        labelTrainIds.png
      ...
    val/
    test/
    # below are generated Cityscapes panoptic annotation
    cityscapes_panoptic_train.json
    cityscapes_panoptic_train/
    cityscapes_panoptic_val.json
    cityscapes_panoptic_val/
    cityscapes_panoptic_test.json
    cityscapes_panoptic_test/
  leftImg8bit/
    train/
    val/
    test/
  • Login and download the dataset

    wget --keep-session-cookies --save-cookies=cookies.txt --post-data 'username=myusername&password=mypassword&submit=Login' https://www.cityscapes-dataset.com/login/
    ######## gtFine
    wget --load-cookies cookies.txt --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=1
    ######## leftImg8bit
    wget --load-cookies cookies.txt --content-disposition https://www.cityscapes-dataset.com/file-handling/?packageID=3
  • Install cityscapes scripts by:

    pip install git+https://github.com/mcordts/cityscapesScripts.git
  • To create labelTrainIds.png, first prepare the above structure, then run cityscapesescript with:

    git clone https://github.com/mcordts/cityscapesScripts.git
    CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesScripts/cityscapesscripts/preparation/createTrainIdLabelImgs.py

    These files are not needed for instance segmentation.

  • To generate Cityscapes panoptic dataset, run cityscapesescript with:

    CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesScripts/cityscapesscripts/preparation/createPanopticImgs.py

    These files are not needed for semantic and instance segmentation.

Expected dataset structure for COCO

coco/
  annotations/
    instances_{train,val}2017.json
    panoptic_{train,val}2017.json
    caption_{train,val}2017.json
    # evaluate on instance labels derived from panoptic annotations
    panoptic2instances_val2017.json
  {train,val}2017/
    # image files that are mentioned in the corresponding json
  panoptic_{train,val}2017/  # png annotations
  panoptic_semseg_{train,val}2017/  # generated by the script mentioned below
  • Install panopticapi by:

    pip install git+https://github.com/cocodataset/panopticapi.git
  • Then, run python datasets/prepare_coco_semantic_annos_from_panoptic_annos.py, to extract semantic annotations from panoptic annotations (only used for evaluation).

  • Then run the following command to convert the panoptic json into instance json format (used for evaluation on instance segmentation task):

    python datasets/panoptic2detection_coco_format.py --things_only

Expected dataset structure for Mapillary Vistas

mapillary_vistas/
  training/
    images/
    instances/
    labels/
    panoptic/
  validation/
    images/
    instances/
    labels/
    panoptic/
  mapillary_vistas_instance_{train,val}.json  # generated by the script mentioned below

No preprocessing is needed for Mapillary Vistas on semantic and panoptic segmentation.

We do not evaluate for the instance segmentation task on the Mapillary Vistas dataset.