-
Notifications
You must be signed in to change notification settings - Fork 14
/
utils.py
275 lines (244 loc) · 9.53 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import librosa
import numpy as np
import fnmatch
import os
import random
import time
import sklearn.utils as sku
import scipy.signal
import numpy.random
from scipy.io import wavfile
import argparse
import yaml
import torch
from sklearn import preprocessing
import math
def overlap_and_add(signal, frame_step):
"""Reconstructs a signal from a framed representation.
Adds potentially overlapping frames of a signal with shape
`[..., frames, frame_length]`, offsetting subsequent frames by `frame_step`.
The resulting tensor has shape `[..., output_size]` where
output_size = (frames - 1) * frame_step + frame_length
Args:
signal: A [..., frames, frame_length] Tensor. All dimensions may be unknown, and rank must be at least 2.
frame_step: An integer denoting overlap offsets. Must be less than or equal to frame_length.
Returns:
A Tensor with shape [..., output_size] containing the overlap-added frames of signal's inner-most two dimensions.
output_size = (frames - 1) * frame_step + frame_length
Based on https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/contrib/signal/python/ops/reconstruction_ops.py
"""
outer_dimensions = signal.size()[:-2]
frames, frame_length = signal.size()[-2:]
subframe_length = math.gcd(frame_length, frame_step) # gcd=Greatest Common Divisor
subframe_step = frame_step // subframe_length
subframes_per_frame = frame_length // subframe_length
output_size = frame_step * (frames - 1) + frame_length
output_subframes = output_size // subframe_length
subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)
frame = torch.arange(0, output_subframes).unfold(0, subframes_per_frame, subframe_step)
frame = signal.new_tensor(frame).long() # signal may in GPU or CPU
frame = frame.contiguous().view(-1)
result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length)
result.index_add_(-2, frame, subframe_signal)
result = result.view(*outer_dimensions, -1)
return result
def find_files(directory, pattern=['*.wav', '*.WAV']):
'''find files in the directory'''
files = []
for root, dirnames, filenames in os.walk(directory):
for filename in fnmatch.filter(filenames, pattern[0]):
files.append(os.path.join(root, filename))
for filename in fnmatch.filter(filenames, pattern[1]):
files.append(os.path.join(root, filename))
return files
def find_dir(directory, pattern):
dir = []
for root, dirnames, filenames in os.walk(directory):
if root.split('/')[-2] == pattern:
dir.append(root)
return dir
#print(dir)
def parse_yaml(yaml_conf):
if not os.path.exists(yaml_conf):
raise FileNotFoundError(
"Could not find config file...{}".format(yaml_conf))
with open(yaml_conf, 'r') as f:
config_dict = yaml.load(f)
return config_dict
def norm_audio(audiofiles, noisefiles):
'''Normalize the audio files
used before training using a independent script'''
for file in audiofiles:
audio, sr = librosa.load(file, sr=16000)
div_fac = 1 / np.max(np.abs(audio)) / 3.0
audio = audio * div_fac
librosa.output.write_wav(file, audio, sr)
for file in noisefiles:
audio, sr = librosa.load(file, sr=16000)
div_fac = 1 / np.max(np.abs(audio)) / 3.0
audio = audio * div_fac
librosa.output.write_wav(file, audio, sr)
def mix(speech1,speech2,SNR):
len1 = len(speech1)
len2 = len(speech2)
tot_len = max(len1, len2)
if len1 < len2:
rep = int(np.floor(len2 / len1))
left = len2 - len1 * rep
temp_audio = np.tile(speech1, [1, rep])
temp_audio.shape = (temp_audio.shape[1],)
speech1 = np.hstack((temp_audio, speech1[:left]))
speech2 = np.array(speech2)
else:
rep = int(np.floor(len1 / len2))
left = len1 - len2 * rep
temp_noise = np.tile(speech2, [1, rep])
temp_noise.shape = (temp_noise.shape[1],)
speech2 = np.hstack((temp_noise, speech2[:left]))
speech1 = np.array(speech1)
fac = np.linalg.norm(speech1)/np.linalg.norm(speech2)/(10**(SNR*0.05))
speech2 *= fac
mix_speech = speech1 + speech2
return mix_speech, speech1, speech2
def normalize_mean(x):
return (x-x.mean())/x.std()
def unnormalize(x1,x2):
return x1*x2.std()+x2.mean()
def zero_mean(x):
return x - x.mean()
def l2_norm(x):
return preprocessing.scale(x,axis=1,with_mean=False,with_std=True)
def make_same_length(speech,len_ref):
len_ref = int(len_ref)
len_s = len(speech)
if len_s < len_ref:
rep = int(np.floor(len_ref / len_s))
left = len_ref - len_s * rep
temp_speech = np.tile(speech, [1, rep])
temp_speech.shape = (temp_speech.shape[1],)
speech = np.hstack((temp_speech, speech[:left]))
else:
rep = int(np.floor(len_s / len_ref))
add = len_ref * (rep+1) - len_s
speech = np.hstack((speech, speech[:add]))
return speech
def padlast(x, len_ref):
len_x = len(x)
fac = int(np.floor(len_x/len_ref))
x_padlast = np.zeros((fac+1)*len_ref)
x_padlast[:fac*len_ref] = x[:fac*len_ref]
x_padlast[fac*len_ref:] = x[(len_x-len_ref):]
return np.float32(x_padlast)
def padding(x, length):
len_x = len(x)
fac = int(np.floor(len_x/length))
x_padded = np.zeros((fac+1)*length)
x_padded[:len_x] = x
return np.float32(x_padded)
class speech_preprocess(object):
def __init__(self,
speech_dir,
train_save_path,
dev_save_path,
test_save_path,
num_data,
sr=8000,
N_L=40,
len_time=0.5,
is_norm=True):
self.speech_dir = speech_dir
self.train_save_path = train_save_path
self.dev_save_path = dev_save_path
self.test_save_path = test_save_path
self.num_data = num_data
self.sr = sr
self.N_L = N_L
self.len_time = len_time
self.is_norm = is_norm
def speech_segment(self,mix_dir,speech1_dir,speech2_dir):
mix, _ = librosa.load(mix_dir, self.sr)
speech1, _ = librosa.load(speech1_dir, self.sr)
speech2, _ = librosa.load(speech2_dir, self.sr)
len_mix = len(mix)
len_ref = int(self.len_time*self.sr)
if len_mix < len_ref:
mix = make_same_length(mix, len_ref)
speech1 = make_same_length(speech1,len_ref)
speech2 = make_same_length(speech2,len_ref)
else:
mix = padlast(mix, len_ref)
speech1 = padlast(speech1,len_ref)
speech2 = padlast(speech2,len_ref)
len_tot = len(mix)
mix = np.reshape(mix, [int(len_tot/len_ref),int(len_ref/self.N_L),self.N_L])
speech1 = np.reshape(speech1, [int(len_tot/len_ref),int(len_ref/self.N_L),self.N_L])
speech2 = np.reshape(speech2, [int(len_tot/len_ref),int(len_ref/self.N_L),self.N_L])
return mix, speech1, speech2
def save_speech(self,mix_speech,speech1,speech2,save_path):
num_speech = mix_speech.shape[0]
for ind in range(num_speech):
np.savez(save_path+'_'+str(ind)+".npz",
mix_speech=mix_speech[ind,:,:],
speech1=speech1[ind,:,:],
speech2=speech2[ind,:,:])
def data_generator(self):
train_data_dir = os.path.join(self.speech_dir, "tr/mix/")
train_mix_dirs = find_files(train_data_dir)
print(train_data_dir)
dev_data_dir = os.path.join(self.speech_dir, "cv/mix/")
dev_mix_dirs = find_files(dev_data_dir)
test_data_dir = os.path.join(self.speech_dir, "tt/mix/")
test_mix_dirs = find_files(test_data_dir)
print('#####generate train_data######')
print(len(train_mix_dirs))
ind = 0
for mix_dir in train_mix_dirs:
if ind%1000 == 0:
print("{}/{} have done".format(ind,20000))
wavname = mix_dir.split('/')[-1]
speech1_dir = os.path.join(self.speech_dir, "tr/s1/" + wavname)
speech2_dir = os.path.join(self.speech_dir, "tr/s2/" + wavname)
mix, speech1, speech2 = self.speech_segment(mix_dir, speech1_dir, speech2_dir)
input_path = os.path.join(self.train_save_path, wavname)
self.save_speech(mix,speech1,speech2,input_path)
ind += 1
print('#####generate dev_data######')
print(len(dev_mix_dirs))
ind = 0
for mix_dir in dev_mix_dirs:
if ind%1000 == 0:
print("{}/{} have done".format(ind,5000))
wavname = mix_dir.split('/')[-1]
speech1_dir = os.path.join(self.speech_dir, "cv/s1/" + wavname)
speech2_dir = os.path.join(self.speech_dir, "cv/s2/" + wavname)
mix, speech1, speech2 = self.speech_segment(mix_dir, speech1_dir, speech2_dir)
input_path = os.path.join(self.dev_save_path, wavname)
self.save_speech(mix,speech1,speech2,input_path)
ind += 1
print('#####generate test_data######')
print(len(test_mix_dirs))
ind = 0
for mix_dir in test_mix_dirs:
if ind%1000 == 0:
print("{}/{} have done".format(ind,3000))
wavname = mix_dir.split('/')[-1]
speech1_dir = os.path.join(self.speech_dir, "tt/s1/" + wavname)
speech2_dir = os.path.join(self.speech_dir, "tt/s2/" + wavname)
mix, speech1, speech2 = self.speech_segment(mix_dir, speech1_dir, speech2_dir)
input_path = os.path.join(self.test_save_path, wavname)
self.save_speech(mix,speech1,speech2,input_path)
ind += 1
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="TasNet by PyTorch ")
parser.add_argument(
"--config",
type=str,
default="train.yaml",
dest="config",
help="Location of .yaml configure files for training")
args = parser.parse_args()
config_dict = parse_yaml(args.config)
data_config = config_dict["data_generator"]
processor = speech_preprocess(**data_config)
processor.data_generator()