-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
33 lines (27 loc) · 1.09 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import cv2
thres = 0.5
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
classNames = []
classFile = 'coco.names'
with open(classFile, 'rt') as f:
classNames = f.read().rstrip('\n').split('\n')
print(classNames)
configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
weightsPath = 'frozen_inference_graph.pb'
net = cv2.dnn_DetectionModel(weightsPath, configPath)
net.setInputSize(320,320)
net.setInputScale(1.0/ 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)
while True:
success, img = cap.read()
classIds, confs, bbox = net.detect(img, confThreshold=thres)
if(len(classIds)) != 0:
for classId, confidence, box in zip(classIds.flatten(), confs.flatten(), bbox):
cv2.rectangle(img, box, color=(0,255,0), thickness=2)
cv2.putText(img, classNames[classId-1].upper(), (box[0]+10, box[1]+30), cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,0), 2)
cv2.putText(img, str(round(confidence*100))+'%', (box[0]+200, box[1]+30), cv2.FONT_HERSHEY_COMPLEX, 1, (0,255,0), 2)
cv2.imshow("Object classification", img)
cv2.waitKey(1)