-
Notifications
You must be signed in to change notification settings - Fork 0
/
workbench_sarajevo.cpp
310 lines (260 loc) · 9.41 KB
/
workbench_sarajevo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// WorkBench: benchmark workspaces by optimizing the PDF parameters wrt the data
//
// call from command line like, for instance:
// root -l 'workbench.cpp()'
R__LOAD_LIBRARY(libRooFit)
#include <chrono>
#include <iostream>
#include <sstream>
#include <fstream>
#include <string>
#include <list>
#include <unistd.h> // usleep
#include <sys/types.h> // for kill
#include <signal.h> // for kill
#include <ctime>
using namespace RooFit;
////////////////////////////////////////////////////////////////////////////////////////////////////
// timing_flag is used to activate only selected timing statements [1-7]
// num_cpu: -1 is special option -> compare overhead communication protocol (wrt 1 cpu)
// parallel_interleave: 0 = blocks of equal size, 1 = interleave, 2 = simultaneous pdfs mode
// { BulkPartition=0, Interleave=1, SimComponents=2, Hybrid=3 }
////////////////////////////////////////////////////////////////////////////////////////////////////
void workbench_sarajevo(std::string workspace_filepath,
bool just_migrad=true,
int num_cpu=1,
std::string workspace_name="HWWRun2GGF",
std::string model_config_name="ModelConfig",
std::string data_name="obsData",
int optConst=2,
int parallel_interleave=0,
bool cpu_affinity=true,
int seed=1,
int timing_flag=1,
bool time_num_ints=false,
bool fork_timer = false,
int fork_timer_sleep_us = 100000,
int print_level=0,
bool debug=false,
bool total_cpu_timing=true,
bool fix_binned_pdfs=false,
bool zero_initial_POI=false,
std::string POI_name=""
// bool callNLLfirst=false
) {
if (debug) {
RooMsgService::instance().addStream(DEBUG);
// extra possible options: Topic(Generation) Topic(RooFit::Eval), ClassName("RooAbsTestStatistic")
}
// int N_parameters(8); // must be even, means and sigmas have diff ranges
if (timing_flag > 0) {
RooJsonListFile outfile;
outfile.open("timing_meta.json");
std::list<std::string> names = {"timestamp",
"workspace_filepath", "workspace_name",
"model_config_name", "data_name",
"num_cpu", "parallel_interleave", "cpu_affinity",
"seed", "pid", "time_num_ints",
"optConst", "print_level", "timing_flag"};
outfile.set_member_names(names.begin(), names.end());
// int timestamp = std::time(nullptr);
outfile << std::time(nullptr)
<< workspace_filepath << workspace_name
<< model_config_name << data_name
<< num_cpu << parallel_interleave << cpu_affinity
<< seed << getpid() << time_num_ints
<< optConst << print_level << timing_flag;
}
RooTrace::timing_flag = timing_flag;
if (time_num_ints) {
RooTrace::set_time_numInts(kTRUE);
}
// other stuff
int printlevel(print_level);
int optimizeConst(optConst);
// int N_timing_loops(3); // not used
if (printlevel == 0) {
RooMsgService::instance().setGlobalKillBelow(RooFit::ERROR);
}
RooRandom::randomGenerator()->SetSeed(seed);
// Load the workspace data and pdf
TFile *_file0 = TFile::Open(workspace_filepath.c_str());
RooWorkspace* w = static_cast<RooWorkspace*>(gDirectory->Get(workspace_name.c_str()));
// Activate binned likelihood calculation for binned models
if (fix_binned_pdfs) {
RooFIter iter = w->components().fwdIterator();
RooAbsArg* component_arg;
while((component_arg = iter.next())) {
if (component_arg->IsA() == RooRealSumPdf::Class()) {
component_arg->setAttribute("BinnedLikelihood");
std::cout << "component " << component_arg->GetName() << " is a binned likelihood" << std::endl;
}
}
}
RooStats::ModelConfig* mc = static_cast<RooStats::ModelConfig*>(w->genobj(model_config_name.c_str()));
auto globs = mc->GetGlobalObservables();
auto nuisance_params = mc->GetNuisanceParameters();
RooAbsPdf* pdf = mc->GetPdf();
RooAbsData * data = w->data(data_name.c_str());
// Manually set initial values of parameter of interest
if (zero_initial_POI) {
if (POI_name.length() > 0) {
RooAbsRealLValue* POI = static_cast<RooAbsRealLValue *>(pdf->getParameters(data)->selectByName(POI_name.c_str())->first());
POI->setVal(0);
} else {
std::cout << "POI_name is empty!" << std::endl;
exit(1);
}
}
// --- Perform extended ML fit of composite PDF to data ---
RooJsonListFile outfile;
RooWallTimer timer;
if (timing_flag == 1) {
outfile.open("timing_full_minimize.json");
outfile.add_member_name("walltime_s")
.add_member_name("segment")
.add_member_name("pid");
}
RooJsonListFile outfile_cpu;
RooCPUTimer ctimer;
if (total_cpu_timing) {
outfile_cpu.open("timing_full_minimize_cpu.json");
outfile_cpu.add_member_name("cputime_s")
.add_member_name("segment")
.add_member_name("pid");
}
Bool_t cpuAffinity;
if (cpu_affinity) {
cpuAffinity = kTRUE;
} else {
cpuAffinity = kFALSE;
}
// for (int it = 0; it < N_timing_loops; ++it)
{
RooAbsReal * RARnll;
if (globs != nullptr) {
RARnll = pdf->createNLL(*data,
CPUAffinity(cpuAffinity),
GlobalObservables(*globs),
Constrain(*nuisance_params),
Offset(kTRUE));//, "Extended");
} else {
RARnll = pdf->createNLL(*data,
CPUAffinity(cpuAffinity),
Constrain(*nuisance_params),
Offset(kTRUE));//, "Extended");
}
// std::shared_ptr<RooAbsTestStatistic> nll(dynamic_cast<RooAbsTestStatistic*>(RARnll)); // shared_ptr gives odd error in ROOT cling!
// RooAbsTestStatistic * nll = dynamic_cast<RooAbsTestStatistic*>(RARnll);
// if (time_evaluate_partition) {
// nll->setTimeEvaluatePartition(kTRUE);
// }
// if (callNLLfirst) {
// RARnll->getVal();
// }
RooMinimizer m(*RARnll);
// m.setVerbose(1);
m.setStrategy(0);
m.setProfile(1);
m.setPrintLevel(printlevel);
m.optimizeConst(optimizeConst);
m.setMinimizerType("Minuit2");
int pid = -1;
if (fork_timer) {
pid = fork();
}
if (pid == 0) {
/* child */
timer.start();
while (true) {
timer.stop();
std::cout << "TIME: " << timer.timing_s() << "s" << std::endl;
usleep(fork_timer_sleep_us);
}
}
else {
/* parent */
double time_migrad, time_hesse, time_minos;
double ctime_migrad, ctime_hesse, ctime_minos;
if (timing_flag == 1) {
timer.start();
}
if (total_cpu_timing) {
ctimer.start();
}
// m.hesse();
m.migrad();
if (timing_flag == 1) {
timer.stop();
}
if (total_cpu_timing) {
ctimer.stop();
}
if (timing_flag == 1) {
std::cout << "TIME migrad: " << timer.timing_s() << "s" << std::endl;
outfile << timer.timing_s() << "migrad" << getpid();
time_migrad = timer.timing_s();
}
if (total_cpu_timing) {
std::cout << "CPUTIME migrad: " << ctimer.timing_s() << "s" << std::endl;
outfile_cpu << ctimer.timing_s() << "migrad" << getpid();
ctime_migrad = ctimer.timing_s();
}
if (!just_migrad) {
if (timing_flag == 1) {
timer.start();
}
if (total_cpu_timing) {
ctimer.start();
}
m.hesse();
if (timing_flag == 1) {
timer.stop();
}
if (total_cpu_timing) {
ctimer.stop();
}
if (timing_flag == 1) {
std::cout << "TIME hesse: " << timer.timing_s() << "s" << std::endl;
outfile << timer.timing_s() << "hesse" << getpid();
time_hesse = timer.timing_s();
}
if (total_cpu_timing) {
std::cout << "CPUTIME hesse: " << ctimer.timing_s() << "s" << std::endl;
outfile_cpu << ctimer.timing_s() << "hesse" << getpid();
ctime_hesse = ctimer.timing_s();
}
if (timing_flag == 1) {
timer.start();
}
if (total_cpu_timing) {
ctimer.start();
}
m.minos(*mc->GetParametersOfInterest());
if (timing_flag == 1) {
timer.stop();
}
if (total_cpu_timing) {
ctimer.stop();
}
if (timing_flag == 1) {
std::cout << "TIME minos: " << timer.timing_s() << "s" << std::endl;
outfile << timer.timing_s() << "minos" << getpid();
time_minos = timer.timing_s();
outfile << (time_migrad + time_hesse + time_minos) << "migrad+hesse+minos" << getpid();
}
if (total_cpu_timing) {
std::cout << "CPUTIME minos: " << ctimer.timing_s() << "s" << std::endl;
outfile_cpu << ctimer.timing_s() << "minos" << getpid();
ctime_minos = ctimer.timing_s();
outfile_cpu << (ctime_migrad + ctime_hesse + ctime_minos) << "migrad+hesse+minos" << getpid();
}
}
if (pid > 0) {
// a child exists
kill(pid, SIGKILL);
}
}
delete RARnll;
}
}