1/15/24, 12:00 PM How to Analyze Malicious PDF Files

Portable Document Format (PDF) files are a cross-platform file format that supports links, images,
and fonts. The flexibility of the PDF format makes these files very useful and widely used by
individuals and organizations all over the world. At the same time, this format is very appealing for
cyber criminals, as they can create valid looking PDF documents that will deliver malicious code or
trick users into clicking links. A 2023 report found PDFs were the most commonly attached

malicious file type for phishing emails.

Many attacks start from a received file, usually attached to a phishing email. Then once the victim
opens the file or interacts with it by clicking on links or buttons, the next stage of the attack is
executed. The purpose of the attack can be information stealing, installing a backdoor, gaining

access to the system, and more.

One of the challenges of incident responders is to identify and classify the malicious files that were
used in the attack that compromised the endpoint. PDF files make the process more time
consuming because PDF files can carry malicious code that is hidden and compressed inside the
streams of the file, all while these files are widely used for legitimate business both internally and
externally in organizations. On top of that, alert fatigue can be a cause of missed alerts and

increase the response time of new files to analyze.

In this article, we will describe the PDF format and how it can be abused to deliver malware. Then
we will show how you can identify and detect a malicious PDF file using open-source and free
tools. At the end we’ll look at how you can automatically collect and analyze PDFs for ongoing alert

triage.

Table of contents
e \What is the PDF File Format?

e How PDF Files Get Used to Deliver Malware

« Investigating Suspicious PDF Files with Open-source or Free Tools

o Example 1 of a malicious PDF
o Example 2 of a malicious PDF

e Scanning a High Volume of PDFs for Malware

What is the PDF File Format?

The PDF format was created by Adobe in 1993, as a text-based structure that gives users a
reliable way to present documents regardless of the operating system and the software they are
using. Besides text, PDF files can present a wide variety of content such as images, links, video

files, 3D objects, editable forms and much more. Many products include features to download or

https://intezer.com/blog/incident-response/analyze-malicious-pdf-files/

1/9

1/15/24, 12:00 PM

“save as PDF”, allowing users to edit the content in another format (like Microsoft Office files)

before creating the PDF.

How to Analyze Malicious PDF Files

The PDF structure is hierarchical and contains four main parts:

1. Header — Specifies the version number of the PDF.

2. The body — The document’s part that holds all of the information including text and other

elements such as images, links, etc.

The body of the PDF file contains different objects which can reference each other, the objects

have different types:

e Names — /name backslash followed by ASCII characters — setting a unique name.

e Strings — (text) its full syntax is a bit complex but what’s important is to know that it is

enclosed in parentheses.
e Arrays — enclosed with square brackets ([...]) can contain other objects.

e Dictionaries — table of key and value pairs. The key is a name object and the value can be

any other object. Enclosed within double angle brackets (<<...>>)

o Streams — contains embedded data structures like images (or code) which can be
compressed. Streams represented by a dictionary that set the stream’s length with the

key /Length and encoding /Filters .

« Indirect object — object that has a unique ID, the object starts with the keyboard obj and

ends with endobj other objects can reference the object using its ID. For example a

reference to object with ID 3 we would look like this: 3 @ R

3. Cross-reference table — Specifies the offset from the start of the file to each object in the file, so

that the PDF reader will be able to locate them without loading the whole document (it can save
time when opening big files).
4. Trailer — Specifies information about the cross-reference table so the PDF reader will be able to

find the table and other objects. PDF readers start reading the file from the end, let’s look at the

example below:

xref

0 14

0000000000
0000000015
0000000660
0000000803
0000001007
0000001322
0000001049

https://intezer.com/blog/incident-response/analyze-malicious-pdf-files/

65535
00000
00000
00000
00000
00000
00000

35 3 3 3 3 35 -h

2/9

1/15/24, 12:00 PM

0000001410
0000001200
0000001461
0000001513
0000001573
0000001632
0000001737
trailer

00000
00000
00000
00000
00000
00000
00000

How to Analyze Malicious PDF Files

5D 53 3 53 3 5 S

<</Size 14/Root 12 @ R/Info 13 © R/ID [<019e8b45c3227a3f8f35b72a9a09c2f70><019e8b45c3227a3

%iText-5.5.

startxref
1901
%HEOF

The first line (from the bottom) is %%EOF above is the offset of the cross-reference table — 1901.

10

Above that is the trailer that specifies different settings:

e Size — number of entries in the cross-reference table

e Root — which entry in the table holds the offset for the root object. This object is the

Document Catalog; it contains information about how the file will be presented and references

to other objects that describe the document’s content.

e Info — which entry in the table holds the offset for the document’s information dictionary.

PDF files can be modified so additional elements (such cross-reference tables) will be appended to

the end of the file. Now that we understand the format, let's see how it can be used by attackers to

conceal malicious code.

Attack Vectors & Techniques

Phishing attacks

L

L

Credentials stealing
installing backdoors

SEMNE persistenoe

Haow?

L

Links to malicious-sites
|avascript
Fapicat POF readers vulnesabllitips

Embeddec streams and [iies within the POE

https://intezer.com/blog/incident-response/analyze-malicious-pdf-files/

3/9

1/15/24, 12:00 PM How to Analyze Malicious PDF Files
Check out this video on our YouTube channel about analyzing PDFs, where | cover the information

in this blog as well as four examples of malicious PDFs that were used in real attacks.

How PDF Files Get Used to Deliver Malware

PDF files support a wide variety of data types that can be present (and not necessarily visible).
Threat actors fully control the content of the files they send to lure victims and they use the different

capabilities of the PDF format for their attacks.

Many phishing attacks will contain links, which may appear as clickable images of buttons,
coupons, fake CAPTCHA, fake play buttons, or QR codes. The purpose of these embedded files is
to redirect the victims to sites controlled by the threat actors where they can proceed to the next

stage of the attack.

PDF files natively support JavaScript, so attackers can create files that will execute scripts once a

file has been opened at this stage to download additional payload or steal information.

Another way in which threat actors can use the format is to deliver malware in the PDF streams.
Streams can contain any type of data (including scripts and binary files) and they can be
compressed and encoded which makes it harder to detect embedded code inside files. The
compression technique is specified with the name /filter (as mentioned in its part of the dictionary

that describes a stream). A stream can have more than one filter.

There are many PDF readers that are being used, some are multiplatform, others based on web
browsers but like any other software they have bugs and vulnerabilities. Adobe PDF Reader alone
has 91 reported vulnerabilities. Therefore threat actors can make PDF files that will exploit

vulnerabilities, which will allow them to execute code and gain access to the victim’s endpoint.

Investigating Suspicious PDF Files with Open-source or
Free Tools

Example 1 of a malicious PDF
Let’s investigate the following PDF file (MD5: a2852936a7e33787c0ab11f346631d89).

The first tool that we are going to use is peepdf, a free python tool that parses PDF files allowing
us to get the types and content of each object. It will also color the object and highlight the objects

that make the file suspicious, like the presence of JavaScript and embedded files.

After running the peepdf with the PDF file we get the output below. We can see that the file was
updated and it has two versions. In the later version we can spot an encoded JavaScript code

which makes this file suspicious so we will extract the content of the object and investigate it.

https://intezer.com/blog/incident-response/analyze-malicious-pdf-files/ 4/9

1/15/24, 12:00 PM How to Analyze Malicious PDF Files

remnux@b262b6d26ce2:~$ peepdf files/2e26d1a3d65d7e15658033c8936c93d74cd7a1b@214c98d9a2e575fa4017d123. sample
Warning: PyV8 is not installed!!

e: 2e26d1a3d65d7e15658033c8936c93d74cd7a1b@214c98d9a2e575fa4017d123. sample
a2852936a7e33787c@ab11f346631d89
Al: 884a10943aff@c3c5b97ac3dae%4dbde8le24b2c
6: 2e26d1a3d65d7e15658033c8936c93d74cd7a1b@214c98d9a2e575fa4017d123
76918 bytes
1.7

5L N2 3RS e N7 R 8 R G A0 1T 12 13 V14 151
{7, 8,9, 12, 141
)2 17, 8,9, 121
1): [S]
Suspicious elements:
/OpenAction (1): [15]
/Names (1): [15]

g: 15
13
s (6): [13, 14, 15, 16, 17, 18]
[14, 18]
led (1): [18]

Objects with JS code (1): [18]
Suspicious elements:
/OpenAction (1): [15]
/Names (2): [15, 16]
/JavaScript (2): [15, 17]
/73S (1): [17]

Output of peepdf

To extract the data from the suspicious object number 18 we will use another open-source
tool called pdf-parser created by Didier Stevens. This free python tool allows us to inspect and
extract different objects. The command below will extract the JavaScript saved in the object into a

file called extract_js:

pdf-parser.py -f -o 18 -d extract_js files/examplel.pdf

Upon inspecting the JavaScript code we can determine that the PDF file will open a window that
will ask the victim to login into his Amazon account... but the data will be actually be submitted to a
malicious site http://sellercentral[.]Jamazon.de.56USGTHDGT4U7YWEWES84GTYS.abecklink.com

for credential stealing.

We could also upload the file to a free Intezer account to get fast, deep answers about whether
the file is malicious and what it does. (If you don’t have an account, you can sign up for one here
now or learn more about what you can do with a free account here.) In the screenshot below is the

execution of the PDF file in Intezer, which lets us inspect the behavior of the file.

This PDF was sent as part of a phishing scam that targeted German speaking victims: the PDF

was attached to an email regarding a “tax invoice” asking the victims to open the attached

https://intezer.com/blog/incident-response/analyze-malicious-pdf-files/ 5/9

1/15/24, 12:00 PM How to Analyze Malicious PDF Files

document and login to their Amazon account.

Comment Share

Adabe
Resder X

TevaSeipt Windo,

Amazon E Mail-Adresse:

S —

The PDF file as it can be seen in the behavior tab of Intezer’s analysis.

Example 2 of a malicious PDF
Let’s take a look at another PDF file (MD5: 1ba5c7ecab62609e4f1d44192cef850e). Once again we

could start by running peepdf on the file to understand if the file might be malicious.

File: 7a81@869705eed6laelafab@c@fict202fe4137fa7ffb164d523d9d38027%e6.sample
MDS: 1baSc7ecab626@%e4f1d44192cef850e

SHAL: f637574b@166e6db975993e8744a8da5f345ea7b

SHAZ56: 7a810869705eedblaelafab@c@f4cf202fed4137fa7ffb164d523d9d38027%eeb
Size: 4618779 bytes

Version: 1.1

Binary: True

Linearized: False

Encrypted: False

Updates: @

Comments: @
Errors: @

Version @:
Catalog: 1
Info: No
Objects (9): [1, 2, 3, 4, 5, 6, 7, 8, 9]
Streams (2): [5, 8]

Encoded (1): [8]
Objects with JS code (1): [9]
Suspicious elements:

/OpenAction (1): [1]

/Names (1): [1]

/35 (1): [9]

/JavaScript (1): [9]

/EmbeddedFiles: [1]

/EmbeddedFile: [8]

Peepdf output

As we see in the output below, the file contains a JavaScript object (object number 9) and one

embedded file (object number 8). Let’s inspect the content of object 8 by running pdf-parser as we

https://intezer.com/blog/incident-response/analyze-malicious-pdf-files/

1/15/24, 12:00 PM How to Analyze Malicious PDF Files
did in the previous example:
remnux@6866a79d9f93:~$ pdf-parser.py -o 8 -f -d drop_file2 exmple2.pdf
obj 8 ©
Type: /EmbeddedFile

Referencing:
Contains stream

<<
/Length 2004304
/Filter /FlateDecode
/Type /EmbeddedFile
>>

The content of the embedded file is saved to drop_file2, we see that the stream containing the data
is The content of the embedded file is saved to drop_file2. We can see that the stream containing
the data is decoded with FlateDecode therefore we use the -f flag which tells pdf-parser to pass the
data through filters. Next we'll check what is the type of the embedded data, so let’s use the file
command on the extracted file:

remnux@6866a79d9f93:~$% file drop_file2
drop_file2: Rich Text Format data, unknown version

At this point, we need to investigate an RTF file. We’'ll use rtfobj from oletools to inspect the file:

remnux@6866a79d9f93:~% rtfobj drop_file2

rtfobj @.60 on Python 3.8.10 - http://decalage.info/python/oletools
THIS IS WORK IN PROGRESS - Check updates regularly!

Please report any issue at https://github.com/decalageZ/oletools/issues

File: 'drop_file2' - size: 4967656 bytes
---+ ---------- + ---
1d |index |OLE Object

rtfobj output for the extracted RTF file

In my previous blog about analyzing malicious Office files, you can find more information about the
tools and techniques for files like RTF. From the output of rtfobj we learn that the extracted RTF file
exploited CVE-2017-11882 — a known vulnerability in Microsoft Equation Editor that enables code
execution. Since Microsoft patched this vulnerability, this particular attack would only be effective if
a user failed to keep their software updated. Now, we can either continue investigating the

shellcode located in the RTF file or upload the original PDF to Intezer to will automatically execute

https://intezer.com/blog/incident-response/analyze-malicious-pdf-files/ 7/9

1/15/24, 12:00 PM How to Analyze Malicious PDF Files

all the steps we just did and on top of that provide a classification of the threat executed by the

PDF.

The results of the analysis can be seen in the screenshot below:

Process Tree
croRd32.exe
WINWORD. EXE
spiwowe4, exe
services.exe
stc’m:‘l exe
EQNEDT32.EXE
Acrobat.exe
vodse.exe

chvjns.exe

Behavior tab in the PDF analysis report from Intezer

In the process tree we see the execution chain of the PDF followed by word process to open the
RTF file and then the call to Equation Editor that is being exploited by the RTF. The malware is
classified as Raccoon Stealer. We can see in the Genetic Analysis tab that the sample shares code

with Azorult and that’s because Raccoon Stealer is considered as its successor.

A SHA256
Eﬁ 7aB10869705eed6laelafa60c0f4cf202fe4137fa7ffb164d523d9d380279¢ee6
= - Malicious file behaviour was observed during the dynamic

execution

Genetic Analysis Behavior Detect & Hunt | BETA

Original File Summary

7a810869705eed61aelafab0cOf4cf202fe4137fa7ffb164d523d9d38027%eeb

Dynamic Execution

File Metadata - Non Executable = BETA
Memory

Size

SHA256

MD5

SHA1

Ssdeep

21 VIRUSTOTAL

Packed

Genetic Analysis tab of the PDF file in Intezer.

Scanning a High Volume of PDFs for Malware

https://intezer.com/blog/incident-response/analyze-malicious-pdf-files/

1/15/24, 12:00 PM How to Analyze Malicious PDF Files
PDF files are very common and useful for all types of organizations but the flexibility of the PDF
format makes it also very attractive for threat actors who use it to carry out different sorts of
attacks. In this blog we presented several open-source and free tools that can be used for static

analysis of a single PDF.

But manual analysis of PDFs isn’t scalable for organizations when there are hundreds of files (or
even more) that need to be investigated. In this case we can use a platform like Intezer that will
automate the initial investigation of the files, allowing us to focus our efforts only on cases where

the manual analysis is absolutely mandatory.

https://intezer.com/blog/incident-response/analyze-malicious-pdf-files/ 9/9

