forked from davda54/sam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
74 lines (59 loc) · 3.26 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import argparse
import torch
from model.wide_res_net import WideResNet
from model.smooth_cross_entropy import smooth_crossentropy
from data.cifar import Cifar
from utility.log import Log
from utility.initialize import initialize
from utility.step_lr import StepLR
import sys; sys.path.append("..")
from sam import SAM
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=128, type=int, help="Batch size used in the training and validation loop.")
parser.add_argument("--depth", default=16, type=int, help="Number of layers.")
parser.add_argument("--dropout", default=0.0, type=float, help="Dropout rate.")
parser.add_argument("--epochs", default=200, type=int, help="Total number of epochs.")
parser.add_argument("--label_smoothing", default=0.1, type=float, help="Use 0.0 for no label smoothing.")
parser.add_argument("--learning_rate", default=0.1, type=float, help="Base learning rate at the start of the training.")
parser.add_argument("--momentum", default=0.9, type=float, help="SGD Momentum.")
parser.add_argument("--threads", default=2, type=int, help="Number of CPU threads for dataloaders.")
parser.add_argument("--rho", default=0.05, type=int, help="Rho parameter for SAM.")
parser.add_argument("--weight_decay", default=0.0005, type=float, help="L2 weight decay.")
parser.add_argument("--width_factor", default=8, type=int, help="How many times wider compared to normal ResNet.")
args = parser.parse_args()
initialize(args, seed=42)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dataset = Cifar(args.batch_size, args.threads)
log = Log(log_each=10)
model = WideResNet(args.depth, args.width_factor, args.dropout, in_channels=3, labels=10).to(device)
base_optimizer = torch.optim.SGD
optimizer = SAM(model.parameters(), base_optimizer, rho=args.rho, lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
scheduler = StepLR(optimizer, args.learning_rate, args.epochs)
for epoch in range(args.epochs):
model.train()
log.train(len_dataset=len(dataset.train))
for batch in dataset.train:
inputs, targets = (b.to(device) for b in batch)
# first forward-backward step
predictions = model(inputs)
loss = smooth_crossentropy(predictions, targets)
loss.mean().backward()
optimizer.first_step(zero_grad=True)
# second forward-backward step
smooth_crossentropy(model(inputs), targets).mean().backward()
optimizer.second_step(zero_grad=True)
with torch.no_grad():
correct = torch.argmax(predictions.data, 1) == targets
log(model, loss.cpu(), correct.cpu(), scheduler.lr())
scheduler(epoch)
model.eval()
log.eval(len_dataset=len(dataset.test))
with torch.no_grad():
for batch in dataset.test:
inputs, targets = (b.to(device) for b in batch)
predictions = model(inputs)
loss = smooth_crossentropy(predictions, targets)
correct = torch.argmax(predictions, 1) == targets
log(model, loss.cpu(), correct.cpu())
log.flush()