We provide deeplab models pretrained on PASCAL VOC 2012 and Cityscapes datasets for reproducing our results, as well as some checkpoints that are only pretrained on ImageNet for training your own models.
Un-tar'ed directory includes:
-
a frozen inference graph (
frozen_inference_graph.pb
). All frozen inference graphs use output stride of 8 and a single eval scale of 1.0. No left-right flips are used, and MobileNet-v2 based models do not include the decoder module. -
a checkpoint (
model.ckpt.data-00000-of-00001
,model.ckpt.index
)
We provide several checkpoints that have been pretrained on VOC 2012 train_aug set or train_aug + trainval set. In the former case, one could train their model with smaller batch size and freeze batch normalization when limited GPU memory is available, since we have already fine-tuned the batch normalization for you. In the latter case, one could directly evaluate the checkpoints on VOC 2012 test set or use this checkpoint for demo. Note MobileNet-v2 based models do not employ ASPP and decoder modules for fast computation.
Checkpoint name | Network backbone | Pretrained dataset | ASPP | Decoder |
---|---|---|---|---|
mobilenetv2_coco_voc_trainaug | MobileNet-v2 | MS-COCO VOC 2012 train_aug set |
N/A | N/A |
mobilenetv2_coco_voc_trainval | MobileNet-v2 | MS-COCO VOC 2012 train_aug + trainval sets |
N/A | N/A |
xception_coco_voc_trainaug | Xception_65 | MS-COCO VOC 2012 train_aug set |
[6,12,18] for OS=16 [12,24,36] for OS=8 |
OS = 4 |
xception_coco_voc_trainval | Xception_65 | MS-COCO VOC 2012 train_aug + trainval sets |
[6,12,18] for OS=16 [12,24,36] for OS=8 |
OS = 4 |
In the table, OS denotes output stride.
Checkpoint name | Eval OS | Eval scales | Left-right Flip | Multiply-Adds | Runtime (sec) | PASCAL mIOU | File Size |
---|---|---|---|---|---|---|---|
mobilenetv2_coco_voc_trainaug | 16 8 |
[1.0] [0.5:0.25:1.75] |
No Yes |
2.75B 152.59B |
0.1 26.9 |
75.32% (val) 77.33 (val) |
23MB |
mobilenetv2_coco_voc_trainval | 8 | [0.5:0.25:1.75] | Yes | 152.59B | 26.9 | 80.25% (test) | 23MB |
xception_coco_voc_trainaug | 16 8 |
[1.0] [0.5:0.25:1.75] |
No Yes |
54.17B 3055.35B |
0.7 223.2 |
82.20% (val) 83.58% (val) |
439MB |
xception_coco_voc_trainval | 8 | [0.5:0.25:1.75] | Yes | 3055.35B | 223.2 | 87.80% (test) | 439MB |
In the table, we report both computation complexity (in terms of Multiply-Adds and CPU Runtime) and segmentation performance (in terms of mIOU) on the PASCAL VOC val or test set. The reported runtime is calculated by tfprof on a workstation with CPU E5-1650 v3 @ 3.50GHz and 32GB memory. Note that applying multi-scale inputs and left-right flips increases the segmentation performance but also significantly increases the computation and thus may not be suitable for real-time applications.
We provide several checkpoints that have been pretrained on Cityscapes train_fine set. Note MobileNet-v2 based model has been pretrained on MS-COCO dataset and does not employ ASPP and decoder modules for fast computation.
Checkpoint name | Network backbone | Pretrained dataset | ASPP | Decoder |
---|---|---|---|---|
mobilenetv2_coco_cityscapes_trainfine | MobileNet-v2 | MS-COCO Cityscapes train_fine set |
N/A | N/A |
xception_cityscapes_trainfine | Xception_65 | ImageNet Cityscapes train_fine set |
[6, 12, 18] for OS=16 [12, 24, 36] for OS=8 |
OS = 4 |
In the table, OS denotes output stride.
Checkpoint name | Eval OS | Eval scales | Left-right Flip | Multiply-Adds | Runtime (sec) | Cityscapes mIOU | File Size |
---|---|---|---|---|---|---|---|
mobilenetv2_coco_cityscapes_trainfine | 16 8 |
[1.0] [0.75:0.25:1.25] |
No Yes |
21.27B 433.24B |
0.8 51.12 |
70.71% (val) 73.57% (val) |
23MB |
xception_cityscapes_trainfine | 16 8 |
[1.0] [0.75:0.25:1.25] |
No Yes |
418.64B 8677.92B |
5.0 422.8 |
78.79% (val) 80.42% (val) |
439MB |
Un-tar'ed directory includes:
- model checkpoint (
model.ckpt.data-00000-of-00001
,model.ckpt.index
).
We also provide some checkpoints that are only pretrained on ImageNet so that one could use this for training your own models.
-
mobilenet_v2: We refer the interested users to the TensorFlow open source MobileNet-V2 for details.
-
xception: We adapt the original Xception model to the task of semantic segmentation with the following changes: (1) more layers, (2) all max pooling operations are replaced by strided (atrous) separable convolutions, and (3) extra batch-norm and ReLU after each 3x3 depthwise convolution are added.
Model name | File Size |
---|---|
xception | 447MB |
-
Mobilenets: Efficient convolutional neural networks for mobile vision applications
Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam
[link]. arXiv:1704.04861, 2017. -
Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
[link]. arXiv:1801.04381, 2018. -
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
[link]. In the Proc. of CVPR, 2017. -
Deformable Convolutional Networks -- COCO Detection and Segmentation Challenge 2017 Entry
Haozhi Qi, Zheng Zhang, Bin Xiao, Han Hu, Bowen Cheng, Yichen Wei, Jifeng Dai
[link]. ICCV COCO Challenge Workshop, 2017. -
The Pascal Visual Object Classes Challenge: A Retrospective
Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams, John M. Winn, Andrew Zisserman
[link]. IJCV, 2014. -
Semantic Contours from Inverse Detectors
Bharath Hariharan, Pablo Arbelaez, Lubomir Bourdev, Subhransu Maji, Jitendra Malik
[link]. In the Proc. of ICCV, 2011. -
The Cityscapes Dataset for Semantic Urban Scene Understanding
Cordts, Marius, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, Bernt Schiele.
[link]. In the Proc. of CVPR, 2016. -
Microsoft COCO: Common Objects in Context
Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, Piotr Dollar
[link]. In the Proc. of ECCV, 2014. -
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, Li Fei-Fei
[link]. IJCV, 2015.